
Nuclear Engineering 705: Transport Theory
Madison, Wisconsin, Spring 2008, UW-Madison Department of Engineering Physics

STUDYING RADIATION THERAPY TREATMENT PLANNING
METHODS AND FORMULATIONS WITH TOLSTOY

Kyle M. Oliver

Department of Engineering Physics
University of Wisconsin-Madison

434 Engineering Research Building
1500 Engineering Drive

Madison, WI 53706
kmoliver@wisc.edu

ABSTRACT

TOLSTOY is a toy code for demonstrating important concepts in treatment planning for
external beam x-ray radiation therapy. It is designed to strike a balance between authenticity and
accessibility, helping users reach a conceptual understanding of how treatment planning codes
work without forcing them to understand every detail of the radiation transport and optimization
calculations. TOLSTOY uses Monte Carlo methods (MCNP) to calculate dose distributions for a
given treatment geometry and given number of equally spaced treatment angles and then solves an
optimization problem (with GAMS/CPLEX) to calculate a beam weight for each angle. This
approach, known as conformal treatment planning, was chosen for ease-of-implementation and
because it is relatively intuitive, in stark contrast to methods that use adjoint functions or intensity-
modulated radiation sources. This paper briefly introduces the pedagogical motivation for
developing this tool, describes its design and methodology, and presents results from an instructive
test problem that approximates a prostate cancer irradiation.

Key Words: radiation therapy; conformal treatment planning; radiation transport;
optimization; MCNP; GAMS/CPLEX; experiential learning

1 MOTIVATION

Radiation therapy treatment planning represents an interesting combination of challenges for
the computational scientist. The associated radiation transport problems require sophisticated
methods due to the geometric complexity of modeling the human body and to the exacting nature
of clinical quality assurance measures. The powerful (and proprietary) nature of the optimization
tools used to create treatment plans, to say nothing of the numerical methods that underlie these
tools, has the potential to further mystify this active and fertile research area, which cannot be
given a complete treatment below the advanced undergraduate level. The result for the would-be
medical physicist is typical of an overall trend in STEM education classified by Brown,
Luyendyk, and Ollis with a common remark from the archetypal student: “I didn’t see what [my
field] was all about until my final semester” (9 Brown, Ann 1997).

However, the underlying principles at work in the simpler dose optimization frameworks are
well within the abilities of, say, a sophomore engineering or applied physics undergraduate. With
some judicious “black boxing,” these concepts can be taught with a simple toy program. This
paper describes the design and the implementation of, and some sample results from, such a tool.
Called TOLSTOY (Treatment Optimization with Linear Scoring TOY), it is designed to be a

K. M. Oliver

lightweight teaching and demonstration tool, not (as will be very obvious) a high-performance
software package for clinical calculations. It attempts to strike a balance between authenticity
and accessibility, giving students the chance to get a feel for how these calculations work without
forcing them to first be able to derive every detail of the methods. This pedagogical approach is
consistent with general frameworks for experiential learning (see, for instance, (Kolb, 1984)) and
their various implementations (for instance, MIT’s well-known Conceive – Design – Implement
– Operate (Crawley, 2002)approach).(Brown, Luyendyk, & Ollis, 1997) One can envision a
variety of meaningful class projects associated with TOLSTOY, including running problems,
extending its capabilities, or improving its performance.

2 METHODS

There are a large and growing number of radiation therapy modalities, and even more
methods for planning these treatments. One obvious approach for both internal (e.g.,
brachytherapy) and external (e.g., x-ray, electron, or hadron beam) radiation therapy planning is
the use of adjoint functions(Lewis & Miller, 1993), which are especially helpful because they
allow the specification of a desired detector response function. In this context, the detector
response is the dose delivered to the tissues of interest. Many methods of brachytherapy (Yoo,
Kowalok, Thomadsen, & Henderson, 2003; Yoo1, Kowalok, Thomadsen, & Henderson, 2007)
and external beam (Wang, Goldstein, Xu, & Sahoo, 2005) planning have been implemented
using adjoint techniques. However, the mathematical theory of adjoint functions is not
especially intuitive and requires knowledge of advanced mathematics and transport theory to
fully appreciate.

Much more accessible methodologically is the so-called conformal approach for external-
beam therapy, which is described in some detail by Lim, et al. (Lim, Ferris, Wright, Shepard, &
Earl, 2002). The basic idea is to calculate, via any appropriate transport method, the spatial dose
distribution delivered to a patient by an x-ray beam incident at a number of different treatment
angles. At each angle, the beam is shaped with a multi-leaf collimator (MLC) to achieve a
“beam’s eye view” of the treatment target. In other words, the x-ray source at each angle is a
planar source whose boundary is the projection of the treatment target onto the plane
perpendicular to the beam axis. Source particles originating outside of this projection have a
better chance of depositing their energy in healthy tissue than in the target, so they should be
excluded. A multi-leaf collimator’s beam’s eye view orientation for a given geometry and angle
is shown in Figure 1.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 2/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 1: A multi-leaf collimator is used to create a “beam’s
eye view” of the treatment target at each angle. Image from
(Lim et al., 2002).

After solving each angle-specific transport problem, one then solves an optimization problem to
choose a weight for each beam that will give the final total dose distribution that most closely
resembles some plan specified by the radiation oncologist. Figure 2 illustrates a five-angle
treatment setup schematically.

w4 w5
w3

w2 w1

Figure 2: Five-angle treatment planning scheme. The red arrow
represents the angle for which the linear accelerator is currently

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 3/47

K. M. Oliver

aligned. Original image from (Fremont-Rideout Health Group,
2005).

The implementation of TOLSTOY makes direct use of two existing software tools to
complete the tasks described above. Los Alamos National Laboratory’s MCNP radiation
transport code (Los Alamos National Laboratory, X-5 Monte Carlo Team, 2005)performs the x-
ray transport calculations, and the commercially developed General Algebraic Modeling System
(GAMS) (GAMS Development Corporation, 2008)with the (ILOG, 2008)CPLEX solver {{65
ILOG 2008}}performs the optimization. Thus, we can describe the design of TOLSTOY with
respect to a number of single-purpose modules:

1. Transport module
Input: a specially formatted MCNP input file, a number of angles for the treatment

plan, and a value of the fluence of the x-ray beam

Task: calculates a source transformation to model the x-ray beam at each treatment
angle and runs the corresponding transport problems

Output: raw data files containing the dose distribution data for each treatment angle

2. Parsing module
Input: the specially formatted MCNP input file, the number of treatment angles, and

the raw dose distribution data

Task: creates a dose distribution matrix (and a dose distribution uncertainty matrix)
for each treatment angle and creates a GAMS input file for solving the
optimization problem subject to the prescription encoded in the MCNP input
file

Output: dose distribution matrices, dose distribution uncertainty matrices,
information about problem geometry, and a GAMS input file

3. Planning module
Input: the GAMS input file

Task: runs the optimization problem

Output: optimal beam weights, objective function score

4. Plotting module
Input: the final plan’s dose distribution matrix computed from the angle-specific

matrices and the optimal weights, information about problem geometry

Task: prepares data files for suitable visualization of the final treatment plan

Output: data files for plotting

The following sections highlight key points of the methodology used in these modules. The
source code for TOLSTOY, which is implemented in Python, is given in the Appendix.
Complete information for preparing TOLSTOY input can be found in the introductory comments
in each source code file; this paper is not intended to be documentation for using the code.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 4/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

2.1 Transport methods
One of the ways in which TOLSTOY is very much a toy is that it uses a geometry specified

analytically in accordance with MCNP’s usual input file requirements, rather than real patient
data from CT scans. Thus, we (arbitrarily) allow the patient region of interest to be specified
inside a 10x10x10 cm cube. Patient structures (organs) can be specified with three types of
MCNP surfaces: spheres, ellipsoids, and infinite cylinders (i.e., cylinders that span the entire
patient volume—we do not support cylindrical volumes whose ends lie in the region of interest).
Surfaces that define target and sensitive tissue (see “Optimization formulation” below) are
marked with special tags that the TOSTLOY parsing module recognizes and that specify
information about the dose prescription for the organs that those surfaces define.

The actual transport problems TOLSTOY solves with MCNP are very simple: a planar x-ray
source travels through 95 cm of air and then enters the patient volume, depositing its energy via
the usual photon-matter interactions (mostly Compton scattering). The source can be modeled
however the user chooses to specify in the MCNP input file.

In the problems presented here, we use a mono-directional, mono-energetic, “perfect BEV”
source. The mono-directional approximation is a good one, since the x-ray beam gets collimated
inside the linear accelerator that produces it. The mono-energetic approximation is not as good.
Blanchard, et al. (Blanchard et al., 2006) discuss in some depth the challenges associated with
modeling the bremsstrahlung process used to create x-rays. That source also gives x-ray spectra
produced by two different linac target designs; one of these spectra could be approximated in
MCNP as a piecewise-linear function of energy to give a more realistic treatment of the beam
energy. However, a mono-energetic source is acceptable for demonstration purposes. Finally, by
“perfect BEV” above we mean that no effort is made to capture the geometry of the multi-leaf
collimator; we simply specify that the shape of the planar source emerging from the MLC is the
projection of the target structure onto the source plane. Figure 3 illustrates the problem
geometry.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 5/47

K. M. Oliver

Patient volume

Source

x

z

y

Target
organ

BEV projection

x-
100 cm

Figure 3: Schematic of a typical treatment planning geometry, for a given
angle. TOLSTOY sets up one such problem for each treatment angle,
rotating the source plane about the x-axis.

We collect the dose distribution data via an MCNP superimposed mesh tally (fmesh4) using
the method suggested by Leone, et al. (Leone et al., 2005). The mesh tally splits the patient
volume into a grid of (orthogonal) voxels and reports an x-ray flux in each one. We convert these
fluxes to dose rates using a standard flux-to-dose table (ANS-6.1.1 Working Group, 1977)
entered into the input file as a tally multiplier card. This tally multiplier operates on the
uncertainty values MCNP reports as well as on the actual dose rates.

The only real work TOLSTOY does before running the transport problems is to create a new
MCNP input file for each of the equally spaced beam angles. The number of angles is specified
as input. TOLSTOY accomplishes this task by replacing a special placeholder in the given input
file with a source transformation. This transformation rotates the source through an angle θ about
the x-axis. Such a rotation can be described by the following matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

)cos()sin(0
)sin()cos(0

001

θθ
θθ (1)

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 6/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

2.2 Computational geometry concerns
As each transport problem runs, MCNP creates a mesh tally output file containing the dose

rate distribution and associated uncertainty. These files get read by the TOLSTOY parsing
module to create dose distribution matrices (see “Optimization formulation” below). Two points
about this process are worth noting. First, because of the multidimensional nature of the
optimization problem we need to solve and the difficulty in handling multi-dimensionality in
GAMS, we’ll actually vectorize the mesh tally grid and associated dose distribution matrices. To
do so (and then to undo it when we’re ready to prepare a data file for plotting), we use the
following standard transformations:

1/))1((
1/)mod)((

mod)mod(

)1()1(

+−−−=
+−=

=

−+−+=

IJjIilk
IIJilj

IIJli

kIJjIil

 (2)

where i, j, and k are the matrix indices of the lth vector element, and I, J, and K are the number of
mesh cells in the x, y, and z directions, respectively.

Second, we need of way of distinguishing whether each vector element l lies in a target
region, and sensitive organ region, or a tissue region. To perform this sort, we take advantage of
the object-oriented capabilities of Python and create shape classes corresponding to the MCNP
surfaces TOLSTOY supports for geometry specification. Thus, the parsing module must also
read the original MCNP input file to create and store shapes associated with patient tissues. As it
creates dose distribution matrices, it also checks whether element l is located in a “target shape”
or “sensitive shape” (if neither is true, that element represents normal tissue). When it performs
this check on all IJK voxels, it performs the simplest possible calculation and classifies the voxel
based on the point at its center. Thus, a voxel could get classified as being in the target region
even if it is not entirely in the target region. The treatment planning errors this decision
introduces shrink as we let the mesh size get small, but this is nevertheless an important effect to
keep in mind.

2.3 Optimization formulation

As in any optimization problem, conformal radiation treatment planning attempts to
maximize or minimize some objective function subject to a list of constraints. We choose the
simplest such scheme suggested by Lim, et al. (Lim et al., 2002). This formulation can be
expressed as a linear program1, a well studied class of optimization problem that can be solved
very efficiently with CPLEX (ILOG, 2008).

We’ll let T, S, and N denote the sets of voxels contained in target structures, sensitive
structures, and normal tissue, respectively. Target structures are the tissue we want to irradiate;

1 The objective function of which provides the titular Linear Scoring in TOLSTOY.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 7/47

K. M. Oliver

sensitive structures are tissues whose dose we want especially to limit. Let A be the set of
possible treatment angles. Let da be the matrix of dose rates delivered to the mesh cells (i,j,k)
from angle a, where i Є {1,2,…I}, j Є {1,2,…J}, k Є {1,2,…K}. Let D be the weighted sum of
these dose distribution matrices that represents the final treatment plan. The units of da are Gy/s,
so we can let the angle-specific weights wa be a the time, in seconds, that the beam at angle a
should be turned on. Using this notation, we can formulate the problem for solving for the beam
weights as follows:

Aaw

dwDts

Df

a

Aa
aa

w

∈∀≥

= ∑
∈

,0

..

)(min

 (3)

All that remains is the choice of the function f. We must choose f so that it measures the
deviation from the prescribed dose distribution. If we choose f to be a linear function, (3) is a
linear program, and we can be sure CPLEX will return an optimal solution as long at the problem
is feasible and bounded. Thus, Lin, et al. suggest the following linear objective function (with
additional constraint):

SSSS

N
N

S
S

TT
T

RxDVVts
Ncard

D
Scard

V
Tcard

RxD
Df

−≥≥

++
−

=

,0..
)()()(

)(111 λλλ
 (4)

where DT, DS, and DN are the actual doses delivered to target, sensitive, and normal voxel sets,
respectively, “card” denotes the cardinality operator (returns the number of elements in a set),
and RxT and RxS are the dose prescription for the target cells and the dose limit for the sensitive
cells, respectively (note that the D’s, Rx’s, and V’s are therefore vector quantities). Thus, this
objective function penalized under-dose and over-dose to the target, over-dose to the sensitive
tissue, and any dose to the normal tissue. The vector (λT, λS, λN) (hereafter “the importance
vector”) weights the relative importance of these three types of penalty. Thus, an importance
vector of (1, 0, 1) only attempts to treat the target with the prescribed amount of radiation and to
spare surrounding tissue to the extent possible, and it treats these goals as equally important. An
importance vector of (1, 1, 1) adds the additional objective of trying to keep the dose to tissue in
sensitive regions below some prescribed threshold. In a clinical setting, the radiation oncologist
would make decisions about the dose prescriptions, sensitive limits, and importance vectors on a
case-by-case basis.

In TOLSTOY, the importance vector is specified by setting λT and λS and taking λN to
always equal one. As currently implemented, the code requires the target dose prescription, RxT,
and sensitive limit, RxS, to be constant over the sets T and S, respectively, although one can
certainly envision cases where some tissues are more sensitive than others. This choice was a
matter of convenience and ease of implementation rather than a considered design decision, and
it would be fairly easy to remedy. See the introductory comment in source code file “parse.py”
for more information.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 8/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

2.4 Visualization

There are two common visualization techniques used to review treatment plans; due to time
constraints, we have only implemented one. The TOLSTOY plotting module currently supports
plotting of dose distribution “slices.” In fact, it doesn’t really even plot these slices, it just creates
a couple of data files (one in a column format suitable for gnuplot and one in a grid format
suitable for MATLAB). Nevertheless, TOLSTOY’s slice-plotting feature makes it possible to
create dose contour plots that look very much like those used by treatment planners. Figure 4
shows a sample dose contour plot over CT image data.

Figure 4: Sample slice-based dose contour plot of a
treatment plan for prostate cancer treatment. Isodose
lines are overlaid over CT image. Image from (Rensselaer
Polytechnic Institute, 2007).

The second common visualization technique, which we might place at the top of a
TOLSTOY “wish list,” is the so-called dose-volume histogram. This image plots volume fraction
of the target versus dose delivered, which allows the oncologist to see how much of the target
receives a given dose (see sample in Figure 5). The data structures are certainly in place to
implement a dose-volume histogram routine in TOLSTOY, we just ran out of time.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 9/47

K. M. Oliver

Figure 5: Sample dose-volume histogram comparing a number
of different treatment plans. Image from (Math Resolutions,
2003).

3 RESULTS AND DISCUSSION

3.1 Problem description
This section will outline the results of an instructive test problem suggested by UW-Madison

Computer Sciences Professor Robert Meyer, who is an active treatment planning researcher. In
this prostate cancer problem, we will represent the target (prostate) as a sphere and the sensitive
organs (bladder, rectum) as an ellipsoid and cylinder, respectively. We will use an image given in
Wang, et al. (Wang et al., 2005) (see Figure 6) as our guide in building the geometry, and we will
use the material data given in Usgaonker (Usgaonker, 2003). The geometry for this problem is
specified in the sample input file in the Appendix and illustrated in Figures 7 and 8. For all runs,
we’ll let the dose prescription for the tumor be 60 Gy and the dose limit prescription for the
sensitive organs be 5 Gy.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 10/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 6: Real-world treatment planning model of prostate cancer
patient. Numbered lines are optimal beam directions computed with an
adjoint method. Image from (Wang et al., 2005).

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 11/47

K. M. Oliver

Figure 7: Schematic of a geometry for prostate cancer problem, for a
given angle (θ = 0). Red organs (bladder and rectum) comprise the
sensitive volume, the green organ (prostate) is the target.

Patient
volume

Source plane

BEV projection

100 cm
x-rays

x

z

y

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 12/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 8: Slice through problem geometry at
z = 0 cm. The magenta material is tissue, the
blue, air. The organs shown are (from
bottom-left) the bladder, prostate, and
rectum.

Careful examination of Figure 7 leads to an observation that adds another item to our
hypothetical TOLSTOY wish list. Note that if we wanted to treat the bladder rather than the
prostate, we would need to manually re-specify the source at each angle, since the projection of
the bladder onto the source plane is not invariant under our x-axis rotation. However, TOLSTOY
can perform as advertised for a single treatment organ that is both centered at the origin and
symmetric about the x-axis. It would be a fairly modest extension of the current code to
implement a means of relaxing this requirement by automating the creation of the MCNP source
specification card itself instead of merely a transformation card for a user-specified source.
Source sampling using so-called “cookie cutter rejection” would likely be useful for this task,
though note that it would require moving some of the functions currently in the TOLSTOY
parsing module into the transport module.

3.2 Uncertainty analysis

Speaking of symmetry, the symmetry of the target organ suggests a test run that will allow
us to probe several important properties of this treatment planning implementation. For starters,
recall that Monte Carlo methods require a large number of simulated particles in order to achieve
validity to within some statistical tolerance. TOLSTOY reads but does not currently process the
uncertainty data reported by the MCNP mesh tally. A rigorous implementation would require a
cell-by-cell check to ensure that, for the number of particles simulated in a given run, the
uncertainty in each voxel was acceptable.2

Instead, we’ll do a numerical experiment on a problem we know the answer to, and we’ll
check to see how our computed answer varies as a function of increasing number of simulated
particles. Consider a treatment plan with an importance vector of (1, 0, 1). If our only goal is to
deliver some specified dose to the tumor cells and to minimize the dose to the normal tissue, then
the optimal plan for a beam angle set that is symmetric with respect to the problem geometry is
to have equal weights on each beam. If we let the number of angles equal four (or two), this
symmetry requirement is met. Thus, Figure 9 plots the computed beam weights for an MCNP
problem size of n = {103, 104, 105, 106} simulated x-rays. Note that with increasing problem size,
the computed beam weights get closer to being equal, as we’d expect. The uncertainty error
manifests itself as unequal beam weights. Based on this test (and our desire to be able to run
cases in a timely manner) we run most other problems with n = 5 x 105 particles and will leave a
rigorous treatment of statistical uncertainty as an exercise to our hypothetical experiential
learner.

2 In fact, careful inspection of the source code will reveal that I tried to do this but ran out of time
trying to debug what I assume was some statistics-related flaw in my reasoning about what the
uncertainty should be. Push it on the wish list, I guess.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 13/47

K. M. Oliver

Figure 9: Results of numerical experiment to observe the effect of statistical
uncertainty in the Monte Carlo method. Note that the flatter lines represent
the beam weights computed from the data with less statistical uncertainty.
Problem symmetry dictates that the weights should be equal.

3.3 Spatial fractionalization benefit
Of course, this obstruction-less, symmetric problem and the assumption that we used to

reason through it (i.e., that we know the objective function penalizes irradiation of normal tissue,
so we want to minimize that penalty by spreading the dose out evenly over many angles)
suggests another numerical experiment. By running problems with an increasing number of
angles, we should be able to measure this “multiple-angles gain” using the objective function
itself. Thus, Figure 10 plots the optimal objective function for one-, two-, three-, and four-beam
treatment plans. This plot is also pedagogically useful. It reinforces the point that the objective
function isn’t some aphysical entity that just happens to help us find the right answer; it’s a score
that can be computed for all feasible treatment plans. The lower the score, the better the plan.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 14/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 10: Results of numerical experiment to observe the benefit of a larger
number of treatment angles on the optimal plan’s objective function.

Two questions come to mind here. The first is “Why not let the treatment angles vary
continuously rather than discretely?” One might guess that much of the motivation for the
development of intensity-modulated radiation therapy is tied up in that question, and one would
hope that exploring treatment plans with TOLSTOY would help students perhaps come to ask
this question on their own. The second question is a finite version of the first: “Why didn’t you
plot, say, five- or six-angle plans on this plot?” The answer to this second question brings us to
another important area of investigation: mesh size.

3.4 Mesh scaling difficulties and benefit

The reason a five-angle plan isn’t plotted in Figure 10 is that the objective function actually
didn’t improve as the five-angle problem was run. Why? Well, eventually adjacent beams start to
overlap, and mesh cells that lie in the overlapping regions receive a “double dose,” which the
objective function penalizes in kind. As we’ll see in a moment, though, a five-angle plan doesn’t
actually introduce enough overlap to make such a plan disadvantageous. The problem is that, for
the gigantic 1 cm mesh size, the overlap penalty gets artificially exaggerated. Unfortunately,
smaller mesh sizes cause the optimization problem to exceed the constraint limit on the free trial
version of GAMS/CPLEX, which is all the UW-Madison College of Engineering has installed on
its machines. The CS department controls access to the full version, but their GAMS liaison is

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 15/47

K. M. Oliver

understandably hesitant to disclose the UW-Madison research- and teaching-use GAMS license
key so that the full version of can be run on CAE machines. Conversely, Los Alamos National
Labs is understandably hesitant to allow MCNP to be installed on unauthorized machines (it
might even be a federal offense). The point is, this self-sufficient code becomes sort of an
awkward monster when running finer-mesh problems. You have to run the transport calculations
on CAE machines, then move everything over to CS machines and run the optimization
calculations there. It can be (and indeed was) done, but it’s a huge time sink, and so we’ll limit
the discussion of problems that require smaller mesh sizes.3

The first demonstration that shrinking the mesh does indeed work (and does present all the
accuracy benefits and execution-time detriments that one expects) is shown in Figure 11, where
we give a comparison of our (1, 0, 1) importance vector problem run with four treatment angles
and mesh sizes of 1 cm and 0.5 cm, respectively. Note the improved smoothness of the isodose
contours for the problem with the smaller mesh size.

3 Which, I have to admit, is pretty much all of them.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 16/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 11: Slice-based isodose contour plots for the optimal treatment plans
computed with mesh sizes of 1 cm (above) and 0.5 cm (below).

Aside from the data porting issues, there are of course serious performance issues to
consider as the mesh size gets closer to something that might be used in the real world. Since
this isn’t a high-performance computing class, we didn’t worry too much about performance, but
it’s important to demonstrate that, given enough computing time, TOLSTOY could work on a
larger scale problem. Thus, Figure 12 plots the dose distribution and isodose contours4 for our
(1, 0, 1) problem with a more realistic mesh size of 0.2 cm. In this case, the mesh size is small
enough that the “artificial overlap penalty” effect discussed earlier goes away, and we get a final
treatment plan that makes pretty full use of each beam in a five-beam problem.

4 The actual dose distribution map doesn’t seem to come up in a clinical context, but it just
looked so cool in this case that I had to include it.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 17/47

K. M. Oliver

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 18/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 12: Dose distribution (above) and isodose contours (below) for (1, 0, 1)
problem with 0.2 cm mesh size and five treatment angles. Note that Figure 12
is starting to somewhat resemble the real-world isodose plot in Figure 4.

3.5 Importance vector variation
Lastly, we will address variation of the importance vector. After all, the choice of test

problem was largely motivated by the desire to calculate treatment plans that spare sensitive
tissue (i.e., the bladder and rectum). Figure 13 plots the dose distribution and isodose contours
for a problem with an importance vector of (1, 1, 1), five treatment angles, and a more modest
0.4 cm mesh size. We’ve roughly sketched in the organs of interest in the isodose contour plot
(compare again to Figure 4) to illustrate that TOLSTOY has done a reasonable job of sparing the
sensitive tissue.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 19/47

K. M. Oliver

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 20/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 13: Dose distribution (above) and isodose contours (below) for (1, 1, 1)
problem with 0.4 cm mesh size and five treatment angles. The contour plot
also includes approximate sketches of the organs of interest.

As we let all elements of the importance vector be non-zero, we start to better appreciate the
complexity of the treatment planning optimization problem. Whereas for the previous runs we
could have perhaps chosen beam weights (or at least relative beam weights) by inspection and
done a pretty good job, here we calculate a result that is at first counterintuitive. While the
optimal plan obviously succeeds at treating the prostate and sparing the rectum, is appears as if
giving a large weight to the beam originating at “3:30” rather than the beam at “6 o’clock” would
do a better job of sparing the bladder. However, the third component of the importance vector
(the one that weights the penalty for not sparing normal tissue) is still non-zero in this run, and
increasing the weight of the 3:30 beam would deliver an increased dose to the voxels in the
upper-lefthand corner of the plot.

We can support this claim by parametrically increasing the second component of the
importance vector. As the objective function treats sparing the rectum and bladder as an
increasingly high priority goal relative to sparing normal tissue and delivering the correct dose to
the tumor, the optimization routine returns plans that divert more weight from the 6 o’clock

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 21/47

K. M. Oliver

beam to the 3:30 beam. This effect is captured visually in Figure 14, which plots isodose
contours for problems with importance vectors of (1, 1, 1), (1, 2, 1), and (1, 3, 1), respectively.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 22/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Figure 14: Isodose contours for parametrically increasing
values of the second importance vector component: (1, 1, 1),
top; (1, 2, 1), middle; (1, 3, 1), bottom. Note the final plan’s
willingness to just absolutely fry the tissue in the top left
portion of the plot in the name of sparing the sensitive organs.

4 CONCLUSIONS AND FUTURE WORK

Hopefully, the previous section indicates some of the technical power of this admittedly
low-performance tool. With even just a few modest generalizations and performance
enhancements (or with just a bunch of patience and available computer time) some fairly
complex treatment planning problems could be studied—limited in the end by one’s ability (and
patience) to specify the relevant geometries in MCNP.

More important, though, is the value of having a flexible demonstration tool that straddles
the authenticity/accessibility spectrum and can serve a variety of pedagogical purposes. One can
certainly imagine the value of a learning experience in which students get to play around with
one of these toy problems, observing the effects of varying the mesh size, the number of
treatment angles, the importance vectors, etc. Many of TOLSTOY’s weakness can be viewed as
strengths when one considers how difficult it would be to create a comparable learning
environment with real-world tools. It seems reasonable to assert that a tool like TOLSTOY
isolates and illustrates the concepts involved in performing treatment planning calculations better
than a more strictly authentic tool could. Making an analogy to NE 705 material, it’s fair to say
that students learned more about discrete ordinate concepts by playing with the 1-D MATLAB

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 23/47

K. M. Oliver

code we used for homework than by learning how to write an input file for a commercial code.
Moreover, if one’s pedagogical objectives include giving students some experience actually
developing software (rather than just using it), having a toy program to work from is almost
essential, since just understanding the source code of a commercial tool, let alone the underlying
methods, requires a huge investment of time and mental effort.

5 ACKNOWLEDGMENTS

I’d like to thank Professor Robert Meyer for sharing his considerable expertise in this field,
for useful advice that helped me limit the scope of the otherwise totally intractable path I’d
originally set myself on, and for letting me divert some time from my CS 719 coursework when I
let TOLSTOY spiral out of control anyway. I’d also like to thank Professor Greg Moses for his
course project flexibility and especially for letting me calculate the dose distributions in MCNP
instead of having to learn a more curricularly relevant deterministic tool.

6 REFERENCES

ANS-6.1.1 Working Group. (1977). American national standard neutron and gamma-ray flux-

to-dose rate factors No. ANSI/ANS-6.1.1-1977 (N666)). LaGrange Park, IL: American

Nuclear Society.

Blanchard, A., Dalton, L., Geurts, M., Jaeger, M., Oliver, K., & Uselmann, A. (2006). Design of

a medical linear accelerator X-ray target. Madison, WI: UW-Madison Department of

Engineering Physics.

Brown, A., Luyendyk, S. & Ollis, D. (1997). Writing across engineering: A first year

implementation. Retrieved 11/11, 2004, from

http://www.succeed.ufl.edu/content/Ollis%20Process%20Dissection%20Lab/E123%20Mai

n/P0.html

Crawley, E. F. (2002). Creating the CDIO syllabus, A universal template for engineering

education. Paper presented at the Boston, MA.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 24/47

http://www.succeed.ufl.edu/content/Ollis%20Process%20Dissection%20Lab/E123%20Main/P0.html
http://www.succeed.ufl.edu/content/Ollis%20Process%20Dissection%20Lab/E123%20Main/P0.html

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Fremont-Rideout Health Group. (2005). Radiation therapy. Retrieved May 14, 2008, from

http://www.frhg.org/hospital.aspx?id=114

GAMS Development Corporation. (2008). General algebraic modeling system Retrieved from

http://www.gams.com/Default.htm

ILOG. (2008). CPLEX Retrieved from http://www.ilog.com/products/cplex/

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and

development. Englewood Cliffs, N.J.: Prentice-Hall.

Leone, J., Furler, M., Oakley, M., Caracappa, P., Wang, B., & Xu, X. G. (2005). Dose mapping

using MCNP5 mesh tallies. Health Physics, 88(2), S31-S33.

Lewis, E. E., & Miller, W. F. (1993). Computational methods of neutron transport. La Grange

Park, IL: American Nuclear Society.

Lim, J. H., Ferris, M. C., Wright, S. J., Shepard, D. M., & Earl, M. A. (2002). An optimization

framework for conformal radiation treatment planning No. 02-10)UW-Madison Computer

Sciences Optimization Group.

Los Alamos National Laboratory, X-5 Monte Carlo Team. (2005). MCNP — A general monte

carlo N-particle transport code Retrieved from http://mcnp-green.lanl.gov/

Math Resolutions, L. (2003). RtDosePlan. Retrieved May 13, 2008, from

http://www.mathresolutions.com/rtdesc.htm

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 25/47

http://www.frhg.org/hospital.aspx?id=114
http://www.gams.com/Default.htm
http://www.ilog.com/products/cplex/
http://mcnp-green.lanl.gov/
http://www.mathresolutions.com/rtdesc.htm

K. M. Oliver

Rensselaer Polytechnic Institute. (2007). Machine learning could speed up radiation therapy for

cancer patients. Retrieved May 13, 2008, from

http://www.medicexchange.com/mall/departmentpage.cfm/MedicExchangeUSA/_81675/7

77/departments-contentview

Usgaonker, S. R. (2003). MCNP modeling of prostate brachytherapy and organ dosimetry.

Unpublished Master of Science, Texas A&M University, Retrieved from

http://txspace.tamu.edu/bitstream/handle/1969.1/305/etd-tamu-2003A-2003032612-

1.pdf?sequence=1

Wang, B., Goldstein, M., Xu, X. G., & Sahoo, N. (2005). Adjoint monte carlo method for

prostate external photon beam treatment planning: An application to 3D patient anatomy.

Physics in Medicine and Biology, 50, 923-935. Retrieved from

http://www.iop.org/EJ/article/0031-9155/50/5/015/pmb5_5_015.pdf?request-id=6f056716-

549c-4ee6-80e4-9c1468064bc5

Yoo, S., Kowalok, M. E., Thomadsen, B. R., & Henderson, D. L. (2003). Treatment planning for

prostate brachytherapy using region of interest adjoint functions and a greedy heuristic.

Physics in Medicine and Biology, 48(24), 4077-4090.

Yoo, S., Kowalok, M. E., Thomadsen, B. R., & Henderson, D. L. (2007). A greedy heuristic

using adjoint functions for the optimization of seed and needle configurations in prostate

seed implant. Physics in Medicine and Biology, 52(3), 815-28.

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 26/47

http://www.medicexchange.com/mall/departmentpage.cfm/MedicExchangeUSA/_81675/777/departments-contentview
http://www.medicexchange.com/mall/departmentpage.cfm/MedicExchangeUSA/_81675/777/departments-contentview
http://txspace.tamu.edu/bitstream/handle/1969.1/305/etd-tamu-2003A-2003032612-1.pdf?sequence=1
http://txspace.tamu.edu/bitstream/handle/1969.1/305/etd-tamu-2003A-2003032612-1.pdf?sequence=1
http://www.iop.org/EJ/article/0031-9155/50/5/015/pmb5_5_015.pdf?request-id=6f056716-549c-4ee6-80e4-9c1468064bc5
http://www.iop.org/EJ/article/0031-9155/50/5/015/pmb5_5_015.pdf?request-id=6f056716-549c-4ee6-80e4-9c1468064bc5

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

APPENDIX: COMPLETE TOLSTOY SOURCE CODE

Sample input file

c MCNP input file for generating BEV dose distribution matrices
c for treatment optimization on spherical tumor with sensitive organs
c
c NOTE: USER IS RESPONSIBLE FOR SPECIFYING CELLS AND SURFACES FOR
PROBLEM
c GEOMETRY, THE BEV X-RAY SOURCE ITSELF, AND THE MESH SIZE. SEE
tolstoy.py AND
c parse.py FOR MORE INFORMATION ABOUT INPUT FILE PREPARATION
c
c Created by Kyle Oliver 3/3/08
c Revised 5/12/08
c
c Importance vector: (1, 1, 1)
c Mesh size: 0.5 cm
c
c Target prescription: 60 Gy
c Sensitive limit: 5 Gy
c
c Cells
1 1 -1.04 -301 103 -104 $ rectum
2 1 -1.04 -302 $ bladder
3 1 -1.04 -201 $ prostate
4 1 -1.04 301 302 201 $ rest of patient
 101 -102
 103 -104
 105 -106
5 2 -0.001020 -401 $ air
 (-101: 102:
 -103: 104:
 -105: 106)
6 0 401 $ rest of universe

c Surfaces
c Patient
101 pz -5
102 pz 5
103 px -5
104 px 5
105 py -5
106 py 5
c TREAT_ORGS 1 60 1
201 so 1 $ prostate
c SENS_ORGS 2 5 0
301 c/x 1.75 1.75 0.75 $ rectum
302 sq 1 0.25 1 0 0 0 -1 0.5 -2 -1.5 $ bladder
c Problem boundary
401 so 106

c Materials
c

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 27/47

K. M. Oliver

c Adult tissue (density = 1.04 g/cc)
m1 1001 -0.10454
 6000 -0.22663
 7014 -0.02490
 8016 -0.63525
 11023 -0.00112
 12000 -0.00013
 14000 -0.00030
 15031 -0.00134
 16000 -0.00204
 17000 -0.00133
 19000 -0.00208
 20000 -0.00024
 26000 -0.00005
 30000 -0.00003
 37085 -0.00001
 40000 -0.00001
c
c Air (density = 0.001020 g/cc)
m2 6000 -0.00012
 7014 -0.75527
 8016 -0.23178
 18000 -0.01283
c
c Source definition
sdef erg = 0.5 pos = 0 0 -100 tr = 1
 par = 2 vec = 0 0 1 dir = 1
 ext = 0 axs = 0 0 1 rad = d1
c
c Source transformation
SRC_TRANS
c default: tr1 0 0 0 1 0 0 0 1 0 0 0 1 1
c
c Source distribution (uniform in x direction)
si1 0 1
sp1 -21 1
c
c Mode specification: photon mode
mode p
c
c Variance reduction
imp:p 1 1 1 1 1 0
c
c Scoring
c
fmesh4:p geom = xyz origin = -5 -5 -5 $ Mesh over patient
 imesh = 5 iints = 11 $ x mesh size
 jmesh = 5 jints = 11 $ y mesh size
 kmesh = 5 kints = 11 $ z mesh size
 out = ij $ gives 2-D x-y matrices
c
fc4 Dose mesh tally computed with ANSI/ANS conversion factors
c
de4 log 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.50
 0.55 0.60 0.65 0.70 0.80 1.00 $ MeV
c

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 28/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

df4 log 3.96e-6 5.82e-7 2.90e-7 2.58e-7 2.83e-7 3.79e-7 5.01e-7 6.31e-7
 7.59e-7 8.78e-7 9.85e-7 1.08e-6 1.17e-6 1.27e-6 1.36e-6 1.44e-6
 1.52e-6 1.68e-6 1.98e-6 $ (rem/hr)/(p/cm^2-s)
c
c Number of particles
nps 500000

Template that the planning module uses to build the GAMS input file

$ontext

template.gms

A template from which to build GAMS input files for treatment planning.

$offtext

sets t "target voxels"
 / TAR_SET /
 s "sensitive voxels"
 / SENS_SET /
 n "normal voxels"
 / NORM_SET /
 a "treatment angles"
 / ANG_SET / ;

parameters th "target dose prescription"
 phi "sensitive dose limit"
 imp_t "target plan importance"
 imp_s "sensitive plan importance"
 imp_n "normal plan importance" ;

th = THETA_VAL ;
phi = PHI_VAL ;

imp_t = TAR_IMP ;
imp_s = SENS_IMP ;
imp_n = NORM_IMP ;

table Dt(t, a) angle-specific dose distribution in target voxels

TAR_TABLE ;

table Ds(s, a) angle-specific dose distribution in sensitive voxels

SENS_TABLE ;

table Dn(n, a) angle-specific dose distribution in normal voxels

NORM_TABLE ;

positive variables w(a) "treatment angle weights" ;

free variables score "plan-specific objective function"

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 29/47

K. M. Oliver

 Vt(t) "target prescription
violation"
 Vs(s) "sensitive prescription
violation" ;
equations

 tv1(t) "penalize overdose"
 tv2(t) "penalize underdose"
 sv1(s) "penalize overdose"
 sv2(s) "no penalty below sensitive limit"
 obj "objective function" ;

tv1(t)..

 Vt(t) =g= sum(a, Dt(t, a) * w(a)) - th ;

tv2(t)..

e Vt(t) =g= th - sum(a, Dt(t, a) * w(a)) ;

sv1(s)..

 Vs(s) =g= sum(a, Ds(s, a) * w(a)) - phi ;

sv2(s)..

 Vs(s) =g= 0 ;

obj..

 score =e=
 imp_t * sum(t, Vt(t)) / card(t) + imp_s *
sum(s, Vs(s)) / card(s) +
 imp_n * sum(n, sum(a, Dn(n, a))) / card(n) ;

model dose_opt /all/ ;

solve dose_opt using lp minimizing score ;

Main program

tolstoy.py

The application wrapper for the modules in the TOLSTOY treatment
planning
tool.

import sys, xport, parse, plan, plot, math, pickle

Check number of arguments; individual modules will check argument
content.
if len(sys.argv) != 4 :
 print "\nUsage: python tolstoy.py inputFile numAngles fluence"
 sys.exit(0)

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 30/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

mcFile = sys.argv[1]
numAngs = sys.argv[2]
fluence = sys.argv[3]

Note the filenames for the modules
xName = "xport.py"
parName = "parse.py"
plaName = "plan.py"
ploName = "plot.py"

Run the transport module
xport.run([xName, mcFile, numAngs])

Run the parsing module

#T, S, N, DDMs, DDMErrs, mmm, MMM, IJK = parse.run([parName, mcFile,
numAngs, fluence])

mmm, MMM, IJK = parse.run([parName, mcFile, numAngs, fluence])

Run the planning module
w, obj = plan.run([plaName, mcFile, numAngs])

print "weights: "
weights = w.keys()
for i in weights :
 print i, " = ", "%e" % w[i]

Calculate the total dose rates and errors using the weights. Don't
forget
to sum errors in quadrature.

Tf = open("tar.vxl", "r")
Sf = open("sens.vxl", "r")
Nf = open("norm.vxl", "r")
DDMf = open("norm.ddm", "r")
DDEf = open("norm.dde", "r")

T = pickle.load(Tf)
S = pickle.load(Sf)
N = pickle.load(Nf)
DDMs = pickle.load(DDMf)
DDErrs = pickle.load(DDEf)

Initialize.
DM_tot = {}
DMErr_tot = {}
for l in DDMs[0].keys() :
 DM_tot[l] = 0
 DMErr_tot[l] = 0

Sum.
for l in DDMs[0].keys() :

 for i, x in enumerate(DDMs) :

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 31/47

K. M. Oliver

 DM_tot[l] = DM_tot[l] + x[l] * w[i]
 DMErr_tot[l] = DMErr_tot[l] + math.pow(DDErrs[i][l]/ 100 *
w[i], 2) # quad.

 DMErr_tot[l] = math.sqrt(DMErr_tot[l])

Plot the angle-specific DDMs if desired.
for i in range(0, int(numAngs)) :
 plot.run([ploName, "ang" + str(i), "slice", DDMs[i], mmm, MMM,
IJK, 0])

Run the plotting module.
plot.run([ploName, mcFile, "slice", DM_tot, mmm, MMM, IJK, 0])

Transport module

xport.py
Runs the transport calculations necessary for a dose optimization routine,
given a specially formatted MCNP input file as the first argument and a
number of angles for which to generate dose distribution data at the second
argument.

The input file must contain a treatment area centered at
the origin. The source will be rotated through the given number of angles
about the x axis. Thus, it should be defined with respect to an MCNP
transformation tr1, which will be inserted at the SRC_TRANS placeholder.
The presence of this placeholder is not checked, though failure to define
it will crash MCNP.

The treatment area must be covered by a uniformly spaced mesh tally that
corresponds to the voxelization. It should use the appropriate tally
multiplier card to convert to dose units.

See parse.py for notes on special handling of the formatting at and near
the surface cards defining the treatment and sensitive organs.

-

Functions

Creates an MCNP geometry transformation card for rotation about the x-axis
by the given angle (in radians)

def makeTrans(theta) :

 pt1 = "tr1 0 0 0 1 0 0 0 "
 pt2 = str(round(math.cos(theta), 4)) + " "
 pt3 = str(round(0 - math.sin(theta), 4)) + " 0 "
 pt4 = str(round(math.sin(theta), 4)) + " "
 pt5 = str(round(math.cos(theta), 4)) + " 1"

 return pt1 + pt2 + pt3 + pt4 + pt5

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 32/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

-

Get modules we need
import sys, os, shutil, math

def run(argv) :

 # Check arguments
 if len(argv) != 3 :
 print "\nUsage: python xport.py inputFile numAngles"
 sys.exit(0)
 if int(argv[2]) < 1 or int(argv[2]) > 10 :
 print "\nError: must run between one and ten angles"
 sys.exit(0)
 mcInp = argv[1]
 numAngs = int(argv[2])

 # Do some file cleanup in case of previous runs in this directory
 print "\nCleaning up old files"
 mcFiles = ["out", ".out", ".sav", "runtp", "mesh", mcInp + "o", mcInp +
"r", ".gms", ".lst"]
 thisDur = "./"

 for file in os.listdir(thisDur) :
 for name in mcFiles :
 if file.find(name) >= 0 :
 os.remove(file)

 # Run MCNP on the given input file if it exists (for the given number of
 # angles), or exit
 if not os.path.exists(argv[1]) :
 print "\nError: missing input file"
 sys.exit(0)

 mcProg = "mcnp5"
 print "\nRunning MCNP"

 # Calculate the theta increment for the number of angles specified.
 th_incr = 2 * math.pi / numAngs

 for i in range(0, numAngs) :

 # Make a new input file name for the one with angle-specific
alterations.
 mcInpAng = mcInp + str(i)

 # Replace the source transformation placeholder in the original input
file.
 fileIn = open(mcInp)
 text = fileIn.read()
 textAng = text.replace("SRC_TRANS", makeTrans(i * th_incr))
 fileAng = open(mcInpAng, 'w')
 fileAng.write(textAng)
 fileIn.close()
 fileAng.close()

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 33/47

K. M. Oliver

 # Do some more file cleanup so we don't crash MCNP.
 try :
 os.remove(mcInpAng + "o")
 os.remove(mcInpAng + "r")
 os.remove(mcInpAng + "m")
 except OSError :
 pass

 # Do the run.
 mcArg = "name=" + mcInpAng
 (runIn, runOut) = os.popen4(mcProg + " " + mcArg)
 print runOut.read()

 # More file cleanup.
 try :
 os.rename("meshtal", mcInpAng + "m")
 except OSError:
 print "\nError: No mesh tally file created"
 sys.exit(0)

Parsing module

parse.py

Parses the MCNP mesh tally files generated from the given MCNP input file,
number of angles, and treatment beam fluence, and creates a GAMS input
file
for the optimization routine. To do so, it must also read the MCNP
geometry.

Treatment and sensitive organs are parsed by reading the sphere, cylinder,
and ellipsoid surfaces immediately following the comment lines

c SENS_ORGS num sensLim sensImp
and
c TREAT_ORGS num treatRx treatImp

where num is the number of surface specification lines that follow these
tagged lines. No checking is done to confirm that these organ surfaces are
entirely within the patient volume or that MCNP sq surfaces are ellipsoids
and not hyper- or para-boloids. Also, ellipsoids must have axes parallel
to the main coordinate axes. Mesh elements are considered to be contained
by the organ if their center point is contained by the organ.

sensLim is the desired limit on dose rate to the sensitive tissue, sensImp
is
the relative importance of this limit (see main reference), treatRx is
the desired dose to the treatment region, and treatImp is the relative
imporance of this limit (by default, the relative importance of sparing
normal tissue is 1)

Get modules we need
import sys, os, shutil, math, re, string, pickle

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 34/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

-
-

Classes

-

Shape is parent to Spheres, Cylinders, Ellipsoids
class Shape(object) :
 def contains(self, x, y, z) :
 raise GeoException, "Can't call contains() on abstract class"

-

Sphere class suppors MCNP surfaces so, s, sx, sy, sz
class Sphere(Shape) :

 # Data members
 x0 = 0
 y0 = 0
 z0 = 0
 r = 0

 # Methods
 def __init__(self, rad, tag = "", bar1 = 0, bar2 = 0, bar3 = 0) :
 self.r = rad

 if tag == "s" or tag == "S" :
 self.x0 = bar1
 self.y0 = bar2
 self.z0 = bar3

 elif tag != "" :
 if re.search(r'sx', tag, re.IGNORECASE) : self.x0 = bar1
 elif re.search(r'sy', tag, re.IGNORECASE) : self.y0 = bar1
 elif re.search(r'sz', tag, re.IGNORECASE) : self.z0 = bar1
 elif re.search(r'so', tag, re.IGNORECASE) : pass
 else : raise GeoException, "Illegal sphere constructor call"

 def contains(self, x, y, z) :
 dx = x - self.x0
 dy = y - self.y0
 dz = z - self.z0
 LHS = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2) + math.pow(dz, 2))
 return LHS < self.r

-

Cylinder class supports MCNP surfaces c/x, c/y, c/z, cx, cy, cz
class Cylinder(Shape) :

 # Data members
 axis = ""
 r = 0
 oc1 = 0
 oc2 = 0

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 35/47

K. M. Oliver

 # Methods
 def __init__(self, tag, rad, offCoord1 = 0, offCoord2 = 0) :
 if offCoord1 != 0 and offCoord2 != 0 and tag.find("/") == -1 :
 raise GeoException, "Illegal cylinder constructor call"

 if re.search(r'[cx/]', tag, re.IGNORECASE) : self.axis = "x"
 elif re.search(r'[cy/]', tag, re.IGNORECASE) : self.axis = "y"
 elif re.search(r'[cz/]', tag, re.IGNORECASE) : self.axis = "z"
 else : raise GeoException, "Illegal cylinder constructor call"

 self.r = rad
 self.oc1 = offCoord1
 self.oc2 = offCoord2

 def contains(self, x, y, z) :
 if self.axis == "x" :
 d1 = y - self.oc1
 d2 = z - self.oc2
 elif axis == "y" :
 d1 = x - self.oc1
 d2 = z - self.oc2
 else :
 d1 = x - self.oc1
 d2 = y - self.oc2
 return math.sqrt(pow(d1, 2) + pow(d2, 2)) < self.r

-

Ellipsoid class supports MCNP surface sq but does not check that the
parameters given truly define an ellipsoid and not a hyper- or para-boloid.
class Ellipsoid(Shape) :

 # Data members
 A = 0
 B = 0
 C = 0
 G = 0
 x0 = 0
 y0 = 0
 z0 = 0

 # Methods
 def __init__(self, xS, yS, zS, gTerm, xBar, yBar, zBar) :
 self.A = xS
 self.B = yS
 self.C = zS
 self.G = gTerm
 self.x0 = xBar
 self.y0 = yBar
 self.z0 = zBar

 def contains(self, x, y, z) :
 xTerm = self.A * pow((x - self.x0), 2)
 yTerm = self.B * pow((y - self.y0), 2)
 zTerm = self.C * pow((z - self.z0), 2)
 return xTerm + yTerm + zTerm + self.G < 0

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 36/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

-
-

Functions

-

makeShape() accepts a line from the MCNP input file and returns the
corresponding Shape object

def makeShape(s) :
 args = re.split(r'\s*', s)
 shType = args[1].lower()
 for i in range(2, len(args)) :
 try : args[i] = float(args[i])
 except ValueError : pass

 # Figure out what type of Shape it is and call the appropriate
constructor.
 if shType == "so" :
 return Sphere(args[2])

 elif shType == "s" :
 return Sphere(args[2], args[1], args[3], args[4], args[5])

 elif shType == "sx" or shType == "sy" or shType == "sz" :
 return Sphere(args[2], args[1], args[3])

 elif shType.find("c/") != -1 :
 return Cylinder(args[1], args[2], args[3], args[4])

 elif shType == "cx" or shType == "cy" or shType == "cz" :
 return Cylinder(args[1], args[2])

 elif shType == "sq" :
 return Ellipsoid(args[2], args[3], args[4], args[8], args[9], args[10],
args[11])

 else :
 raise SystemExit("Error: unsupported surface shape specified: ")

-

makeTable() constructs a table for entering angle-specific dose
distribution information into GAMS.

def makeTable(set, doses) :

 s13 = " "
 s12 = " "
 s11 = " "
 s10 = " "
 s9 = " "
 s8 = " "
 s7 = " "
 s6 = " "
 s5 = " "

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 37/47

K. M. Oliver

 s4 = " "
 s3 = " "
 s2 = " "
 s1 = " "
 tbl = s12

 # Create the labels we need.
 for lab, a in enumerate(doses) :
 tbl = tbl + str(lab) + s12

 tbl = tbl + "\n"

 #Iterate over the voxels in the set.
 for l in set :
 if l < 10 : tbl = tbl + str(l) + s11
 elif l < 100 : tbl = tbl + str(l) + s10
 elif l < 1000 : tbl = tbl + str(l) + s9
 elif l < 10000 : tbl = tbl + str(l) + s8
 elif l < 100000 : tbl = tbl + str(l) + s7
 elif l < 1000000 : tbl = tbl + str(l) + s6
 elif l < 10000000 : tbl = tbl + str(l) + s5
 elif l < 100000000 : tbl = tbl + str(l) + s4
 elif l < 1000000000 : tbl = tbl + str(l) + s3
 elif l < 10000000000 : tbl = tbl + str(l) + s2
 else : raise SystemExit("Error: Too many voxels")

 #Iterate over angels in the DDM list.
 for a in doses :
 elt = '%e' % a[l]
 tbl = tbl + elt + s1

 tbl = tbl + "\n"

 return tbl

-
-

def run(argv) :

 # Check arguments
 if len(argv) != 4 :
 print "\nUsage: python parse.py inputFile numAngles fluence"
 sys.exit(0)
 if int(argv[2]) < 1 :
 print "\nError: must run at least one angle"
 sys.exit(0)
 mcInp = argv[1]
 numAngs = int(argv[2])
 fluence = float(argv[3]) # photons / cm^2 / s
 srcArea = 100 # cm^2

 # Grab and sort the files we need.
 meshFiles = []
 thisDur = "./"
 for file in os.listdir(thisDur) :

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 38/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

 match = re.search(r'[0-9]m\Z', file)
 if match : meshFiles.append(file)

 if len(meshFiles) == 0 :
 print "Error: couldn't find mesh tally files."
 sys.exit(0)

 meshFiles.sort()
 meshFiles = meshFiles[0:numAngs]

 # Get info about the mesh. (The following is inelegant, but it works.)
 mcText = open(mcInp).read()

 match = re.search(r'iints\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : I = int(match.group(1))
 else : raise SystemExit("Error in MCNP input file: iints undefined")

 match = re.search(r'jints\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : J = int(match.group(1))
 else : raise SystemExit("Error in MCNP input file: jints undefined")

 match = re.search(r'kints\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : K = int(match.group(1))
 else : raise SystemExit("Error in MCNP input file: kints undefined")

 match = re.search(r'imesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : xM = float(match.group(1))
 else : raise SystemExit("Error in MCNP input file: imesh undefined")

 match = re.search(r'jmesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : yM = float(match.group(1))
 else : raise SystemExit("Error in MCNP input file: jmesh undefined")

 match = re.search(r'kmesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE)
 if match : zM = float(match.group(1))
 else : raise SystemExit("Error in MCNP input file: kmesh undefined")

 match = re.search(r'origin\s*=\s*([0-9\s-]*)', mcText, re.IGNORECASE)
 if match :
 coords = match.group(1)
 vals = re.split(r'\s', coords, 2)
 xm = float(vals[0])
 ym = float(vals[1])
 zm = float(vals[2])
 else : raise SystemExit("Error in MCNP input file: origin undefined")

 dx = (xM - xm) / I
 dy = (yM - ym) / J
 dz = (zM - zm) / K

 # Get info about the rest of the geometry and dose prescription. First,
 # figure out where the lines we need are.

 mcLines = (open(mcInp)).readlines()

 numTreat = 0
 numSens = 0

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 39/47

K. M. Oliver

 tLine = -1
 sLine = -1

 tRx = 0 # prescribed dose for treatment regions
 tImp = 0 # importance of treatment prescription
 sLim = 0 # dose limit for sensitive tissue
 sImp = 0 # importance of sensitive tissue dose limit
 nImp = 1 # importance of sparing normal tissue (1 is default)

 # Look for the markers and read the numbers that follow.
 for i, x in enumerate(mcLines) :
 if x.find("c TREAT_ORGS") >= 0 :
 try :
 tLine = i + 1
 tTokens = re.split('\s', x)
 numTreat = int(tTokens[2])
 tRx = float(tTokens[3])
 tImp = float(tTokens[4])

 except Error :
 raise SystemExit("Error: bad formatting near TREAT_ORGS")

 if x.find("c SENS_ORGS") >= 0 :
 try :
 sLine = i + 1
 sTokens = re.split('\s', x)
 numSens = int(sTokens[2])
 sLim = float(sTokens[3])
 sImp = float(sTokens[4])

 except Error :
 raise SystemExit("Error: bad formatting near SENS_ORGS")

 if numTreat == 0 and numSens == 0 :
 raise SystemExit("Error: no optimization constraints defined")

 # Next, read the lines and create the Shapes.

 tShapes = []
 tCount = numTreat
 while tCount > 0 :
 tShapes.append(makeShape(mcLines[tLine]))
 tLine = tLine + 1
 tCount = tCount -1

 sShapes = []
 sCount = numSens
 while sCount > 0 :
 sShapes.append(makeShape(mcLines[sLine]))
 sLine = sLine + 1
 sCount = sCount -1

 # Create dose distribution matrices. We'll actually make these
 # vector-like, since that will be way easier to pass to GAMS. We'll
 # map the mesh point (i,j,k) onto (l) to make the set one-dimensional:
 # l = i + I(j-1) + IJ(k-1)

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 40/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

 DDMs = [] # list of dose distribution matrices
 DDMErrs = [] # list of dose distribution matrices' error

 # A note on units: Now, the units in the mesh tally are rem*s/h/particle.
 # We need to get to a dose rate of Gy/s, so our conversion factor will be
 # the fluence times the beam x-section times some conversion to fix the
time
 # and dose units:

 conv = fluence * srcArea / 3600 / 100

 for mFile in meshFiles :

 fDDM = {}
 fDDMErr = {}

 mLines = (open(mFile)).readlines()
 lNum = 0
 i = 1
 j = 1
 k = 1
 while lNum < len(mLines) :
 if mLines[lNum].find("Tally Results:") != -1 :

 while j <= J :
 dTokens = re.split(r'\s*', mLines[lNum + 1 + j])
 eTokens = re.split(r'\s*', mLines[lNum + 4 + j + J])

 while i <= I :

 l = i + I * (j - 1) + I * J * (k - 1)
 fDDM[l] = float(dTokens[i+1]) * conv
 fDDMErr[l] = float(eTokens[i+1]) * conv
 i = i + 1

 i = 1
 j = j + 1

 i = 1
 j = 1
 k = k + 1
 lNum = lNum + 5 + 2 * J

 else :
 lNum = lNum + 1

 DDMs.append(fDDM)
 DDMErrs.append(fDDMErr)

 # Need to sort mesh points into three different sets: T, S, N (see
 # formulation reference).

 # Sets
 T = []
 S = []
 N = []

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 41/47

K. M. Oliver

 for k in range(1, K + 1) :
 for j in range(1, J + 1) :
 for i in range(1, I + 1) :
 vPlaced = False
 l = i + I * (j - 1) + I * J * (k - 1)
 x = xm + dx / 2 + dx * (i - 1)
 y = ym + dy / 2 + dy * (j - 1)
 z = zm + dz / 2 + dz * (k - 1)

 for sh in tShapes :
 if sh.contains(x, y, z) :
 if vPlaced == True :
 raise GeoException, "Error: voxel
contained by multiple shapes."
 else :
 vPlaced = True
 T.append(l)

 if False == vPlaced :
 for sh in sShapes :
 if sh.contains(x, y, z) :
 if True == vPlaced :
 raise GeoException, "Error: voxel
contained by multiple shapes."
 else :
 vPlaced = True
 S.append(l)

 if False == vPlaced : N.append(l)

 # OK, now we've got everything we need to make the GAMS input file. Let's
do
 # it.

 # Copy from the template.
 gStr = open("GAMS_TMPL").read()
 if gStr == "" :
 raise SystemExit("Error: bad GAMS_TMPL file")

 # Now replace the placeholders with the stuff we need.

 # Create the sets.
 TAR_REPL = ""
 for l in T :
 newV = str(l) + ",\n"
 TAR_REPL = TAR_REPL + newV
 TAR_REPL = TAR_REPL[0:len(TAR_REPL)-2]
 gStr = gStr.replace("TAR_SET", TAR_REPL)

 SENS_REPL = ""
 for l in S :
 newV = str(l) + ",\n"
 SENS_REPL = SENS_REPL + newV
 SENS_REPL = SENS_REPL[0:len(SENS_REPL)-2]
 gStr = gStr.replace("SENS_SET", SENS_REPL)

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 42/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

 NORM_REPL = ""
 for l in N :
 newV = str(l) + ",\n"
 NORM_REPL = NORM_REPL + newV
 NORM_REPL = NORM_REPL[0:len(NORM_REPL)-2]
 gStr = gStr.replace("NORM_SET", NORM_REPL)

 ANG_REPL = ""
 for l in range(0, numAngs) :
 ANG_REPL = ANG_REPL + str(l) + ", "
 ANG_REPL = ANG_REPL[0:len(ANG_REPL)-2]
 gStr = gStr.replace("ANG_SET", ANG_REPL)

 # Replace the prescription, dose limit, importance placeholders
 gStr = gStr.replace("THETA_VAL", str(tRx))
 gStr = gStr.replace("PHI_VAL", str(sLim))
 gStr = gStr.replace("TAR_IMP", str(tImp))
 gStr = gStr.replace("SENS_IMP", str(sImp))
 gStr = gStr.replace("NORM_IMP", str(nImp))

 # Replace the table placeholders

 gStr = gStr.replace("TAR_TABLE", makeTable(T, DDMs))
 gStr = gStr.replace("SENS_TABLE", makeTable(S, DDMs))
 gStr = gStr.replace("NORM_TABLE", makeTable(N, DDMs))

 # Write the actual GAMS file.

 gFile = open(mcInp + ".gms",'w')
 gFile.write(gStr)
 gFile.close()

 Tf = open("tar.vxl", "w")
 Sf = open("sens.vxl", "w")
 Nf = open("norm.vxl", "w")
 DDMf = open("norm.ddm", "w")
 DDEf = open("norm.dde", "w")

 pickle.dump(T, Tf)
 pickle.dump(S, Sf)
 pickle.dump(N, Nf)
 pickle.dump(DDMs, DDMf)
 pickle.dump(DDMErrs, DDEf)

 return ((xm, ym, zm), (xM, yM, zM), (I, J, K))

Planning module

plan.py

Runs GAMS on the input file generated by the given MCNP treatment planning
input file.

import sys, os, shutil, math

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 43/47

K. M. Oliver

def run(argv) :

 # Check arguments
 if len(argv) != 3 :
 print "\nUsage: python plan.py inputFile numAngs"
 sys.exit(0)
 if int(argv[2]) < 1 :
 print "\nError: must run at least one angle"
 sys.exit(0)
 mcInp = argv[1]
 numAngs = int(argv[2])

 # Run GAMS

 gProg = "gams"
 gArg = mcInp + ".gms"

 (runIn, runOut) = os.popen4(gProg + " " + gArg)
 print runOut.read()

 # Extract weights if they're there. Report errors if they exist.
 gOut = mcInp + ".lst"

 gStr = open(gOut).read()
 if gStr == "" :
 raise SystemExit("Error: bad " + gStr + " file")
 if gStr.find("Optimal solution found.") == -1 :
 raise SystemExit("Could not find optimal treatment plan as specified.")
 gLines = open(gOut).readlines()

 # Define number of lines in a page-break message.
 numBrLines = 9

 # Find the placeholder.
 for i, x in enumerate(gLines) :
 if x.find("---- VAR w treatment angle weights") != -1 :
 wLines = range(i + 4, i + 4 + numAngs + numBrLines)
 # last term accounts for if there's a page break

 w = {}
 bCol = 23 # "hundred digit" of the weight is here, if this weight is non-
zero
 eCol = 31 # column "just past" the end of the weight, if this weight is n-
z
 pCol = 26 # column where the period is

 for i in wLines :
 lStr = gLines[i]

 try :
 ss = int(lStr[0:1]) #subscript (of w)

 if lStr[pCol-1:pCol+2] == " . " : # means this weight is zero
 w[ss] = 0
 else :
 val = lStr[bCol:eCol]
 w[ss] = float(val)

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 44/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

 except ValueError :
 pass

 # Extract the objective function.

 # Find the placeholder.
 for i, x in enumerate(gLines) :
 if x.find("Objective : ") != -1 :
 oLine = i

 # Get the value.
 bCol = 22
 eCol = 30
 val = (gLines[oLine])[22:30]
 obj = float(val)

 return (w, obj)

Plotting module

plot.py

Plots the given data given some plotting option.

Get modules we need
import sys, os, shutil, math, re, string

def run(argv) :

 # Check arguments
 if len(argv) != 8 :
 print "\nUsage: python plot.py inputFile plotOpt doses geo optPar"
 sys.exit(0)
 if argv[2] != "slice" and argv[2] != "hist" :
 print "\nError: bad plot option"
 sys.exit(0)
 mcInp = argv[1]
 plotOpt = argv[2]
 DM = argv[3]
 mmm = argv[4]
 MMM = argv[5]
 IJK = argv[6]
 optPar = argv[7]

 xm = mmm[0]
 ym = mmm[1]
 zm = mmm[2]

 xM = MMM[0]
 yM = MMM[1]
 zM = MMM[2]

 I = IJK[0]

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 45/47

K. M. Oliver

 J = IJK[1]
 K = IJK[2]

 dx = (xM - xm) / I
 dy = (yM - ym) / J
 dz = (zM - zm) / K

 # Plot the slice.
 if plotOpt == "slice" :

 # Figure out what slice we're supposed to plot.
 pt = optPar
 if pt < xm or pt > xM :
 raise SystemExit("Error: bad option-specific plotting parameter")

 # Open the appropriate .dat file
 gFile = mcInp + "_slice_%*.*f.gdat" % (1, 3, pt)
 mFile = mcInp + "_slice_%*.*f.dat" % (1, 3, pt)
 try :
 os.remove(gFile)
 except OSError :
 pass

 try :
 os.remove(mFile)
 except OSError :
 pass

 gf = open(gFile, 'w')
 mf = open(mFile, 'w')

 # Pull out the data for the slice.

 # Get the nearest index.
 islice = round((pt - xm) / (xM - xm) * I, 0)

 sp = " "

 # Iterate over the dose matrix to generate vector-form of the data file
 for l in DM.keys() :
 i = (l % (I*J)) % I

 # If we're in the slice, grab the data.
 if i == islice :
 j = ((l - i) % (I*J)) / I + 1
 k = (l - i - I * (j - 1)) / (I*J) + 1

 y = ym + dy / 2 + dy * (j - 1)
 z = zm + dz / 2 + dz * (k - 1)

 yp = "%+*.*f" % (1, 3, y)
 zp = "%+*.*f" % (1, 3, z)

 d = DM[l]

 # Write it.
 gf.write(yp + sp + zp + sp + str(d) + "\n")

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 46/47

Studying Radiation Therapy Treatment Planning Methods and Formulations with TOLSTOY

Nuclear Engineering 705: Transport Theory, UW-Madison College of Engineering 47/47

 gf.close()

 # Loop over J and K values to generate matrix-form of the data file
 for j in range(1, J+1) :
 for k in range(1, K+1) :
 l = islice + I * (j - 1) + I * J * (k - 1)
 dp = "%e" % DM[l]
 mf.write(dp + sp)
 mf.write("\n")

 mf.close()

	1 MOTIVATION
	2 METHODS
	2.1 Transport methods
	2.2 Computational geometry concerns
	2.3 Optimization formulation
	2.4 Visualization

	3 RESULTS AND DISCUSSION
	3.1 Problem description
	3.2 Uncertainty analysis
	3.3 Spatial fractionalization benefit
	3.4 Mesh scaling difficulties and benefit
	3.5 Importance vector variation

	4 CONCLUSIONS AND FUTURE WORK
	5 ACKNOWLEDGMENTS
	6 REFERENCESANS-6.1.1 Working Group. (1977). Ameri
	Sample input file
	Template that the planning module uses to build the GAMS input file
	Main program
	Transport module
	Parsing module
	Planning module
	Plotting module

