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ABSTRACT 

TOLSTOY is a toy code for demonstrating important concepts in treatment planning for 
external beam x-ray radiation therapy. It is designed to strike a balance between authenticity and 
accessibility, helping users reach a conceptual understanding of how treatment planning codes 
work without forcing them to understand every detail of the radiation transport and optimization 
calculations. TOLSTOY uses Monte Carlo methods (MCNP) to calculate dose distributions for a 
given treatment geometry and given number of equally spaced treatment angles and then solves an 
optimization problem (with GAMS/CPLEX) to calculate a beam weight for each angle. This 
approach, known as conformal treatment planning, was chosen for ease-of-implementation and 
because it is relatively intuitive, in stark contrast to methods that use adjoint functions or intensity-
modulated radiation sources.  This paper briefly introduces the pedagogical motivation for 
developing this tool, describes its design and methodology, and presents results from an instructive 
test problem that approximates a prostate cancer irradiation.  

Key Words: radiation therapy; conformal treatment planning; radiation transport; 
optimization; MCNP; GAMS/CPLEX; experiential learning 

1 MOTIVATION 

Radiation therapy treatment planning represents an interesting combination of challenges for 
the computational scientist. The associated radiation transport problems require sophisticated 
methods due to the geometric complexity of modeling the human body and to the exacting nature 
of clinical quality assurance measures. The powerful (and proprietary) nature of the optimization 
tools used to create treatment plans, to say nothing of the numerical methods that underlie these 
tools, has the potential to further mystify this active and fertile research area, which cannot be 
given a complete treatment below the advanced undergraduate level. The result for the would-be 
medical physicist is typical of an overall trend in STEM education classified by Brown, 
Luyendyk, and Ollis with a common remark from the archetypal student: “I didn’t see what [my 
field] was all about until my final semester” (9 Brown, Ann 1997).   

However, the underlying principles at work in the simpler dose optimization frameworks are 
well within the abilities of, say, a sophomore engineering or applied physics undergraduate. With 
some judicious “black boxing,” these concepts can be taught with a simple toy program. This 
paper describes the design and the implementation of, and some sample results from, such a tool. 
Called TOLSTOY (Treatment Optimization with Linear Scoring TOY), it is designed to be a 
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lightweight teaching and demonstration tool, not (as will be very obvious) a high-performance 
software package for clinical calculations. It attempts to strike a balance between authenticity 
and accessibility, giving students the chance to get a feel for how these calculations work without 
forcing them to first be able to derive every detail of the methods. This pedagogical approach is 
consistent with general frameworks for experiential learning (see, for instance, (Kolb, 1984)) and 
their various implementations (for instance, MIT’s well-known Conceive – Design – Implement 
– Operate (Crawley, 2002)approach).(Brown, Luyendyk, & Ollis, 1997)  One can envision a 
variety of meaningful class projects associated with TOLSTOY, including running problems, 
extending its capabilities, or improving its performance. 

 

2 METHODS 

There are a large and growing number of radiation therapy modalities, and even more 
methods for planning these treatments. One obvious approach for both internal (e.g., 
brachytherapy) and external (e.g., x-ray, electron, or hadron beam) radiation therapy planning is 
the use of adjoint functions(Lewis & Miller, 1993), which are especially helpful because they 
allow the specification of a desired detector response function. In this context, the detector 
response is the dose delivered to the tissues of interest. Many methods of brachytherapy (Yoo, 
Kowalok, Thomadsen, & Henderson, 2003; Yoo1, Kowalok, Thomadsen, & Henderson, 2007) 
and external beam (Wang, Goldstein, Xu, & Sahoo, 2005) planning have been implemented 
using adjoint techniques.  However, the mathematical theory of adjoint functions is not 
especially intuitive and requires knowledge of advanced mathematics and transport theory to 
fully appreciate. 

Much more accessible methodologically is the so-called conformal approach for external-
beam therapy, which is described in some detail by Lim, et al. (Lim, Ferris, Wright, Shepard, & 
Earl, 2002). The basic idea is to calculate, via any appropriate transport method, the spatial dose 
distribution delivered to a patient by an x-ray beam incident at a number of different treatment 
angles. At each angle, the beam is shaped with a multi-leaf collimator (MLC) to achieve a 
“beam’s eye view” of the treatment target. In other words, the x-ray source at each angle is a 
planar source whose boundary is the projection of the treatment target onto the plane 
perpendicular to the beam axis. Source particles originating outside of this projection have a 
better chance of depositing their energy in healthy tissue than in the target, so they should be 
excluded. A multi-leaf collimator’s beam’s eye view orientation for a given geometry and angle 
is shown in Figure 1. 
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Figure 1: A multi-leaf collimator is used to create a “beam’s 
eye view” of the treatment target at each angle. Image from 
(Lim et al., 2002). 

 

After solving each angle-specific transport problem, one then solves an optimization problem to 
choose a weight for each beam that will give the final total dose distribution that most closely 
resembles some plan specified by the radiation oncologist. Figure 2 illustrates a five-angle 
treatment setup schematically.   

 

 

w4 w5 
w3 

w2 w1 

Figure 2: Five-angle treatment planning scheme. The red arrow 
represents the angle for which the linear accelerator is currently 
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aligned. Original image from (Fremont-Rideout Health Group, 
2005). 

 

The implementation of TOLSTOY makes direct use of two existing software tools to 
complete the tasks described above. Los Alamos National Laboratory’s MCNP radiation 
transport code (Los Alamos National Laboratory, X-5 Monte Carlo Team, 2005)performs the x-
ray transport calculations, and the commercially developed General Algebraic Modeling System 
(GAMS) (GAMS Development Corporation, 2008)with the (ILOG, 2008)CPLEX solver {{65 
ILOG 2008}}performs the optimization.  Thus, we can describe the design of TOLSTOY with 
respect to a number of single-purpose modules: 

1. Transport module 
Input: a specially formatted MCNP input file, a number of angles for the treatment 

plan, and a value of the fluence of the x-ray beam 

Task: calculates a source transformation to model the x-ray beam at each treatment 
angle and runs the corresponding transport problems 

Output: raw data files containing the dose distribution data for each treatment angle 

2. Parsing module 
Input: the specially formatted MCNP input file, the number of treatment angles, and 

the raw dose distribution data 

Task: creates a dose distribution matrix (and a dose distribution uncertainty matrix) 
for each treatment angle and creates a GAMS input file for solving the 
optimization problem subject to the prescription encoded in the MCNP input 
file 

Output: dose distribution matrices, dose distribution uncertainty matrices, 
information about problem geometry, and a GAMS input file 

3. Planning module 
Input: the GAMS input file 

Task: runs the optimization problem  

Output: optimal beam weights, objective function score 

4. Plotting module 
Input: the final plan’s dose distribution matrix computed from the angle-specific 

matrices and the optimal weights, information about problem geometry 

Task: prepares data files for suitable visualization of the final treatment plan 

Output: data files for plotting 

The following sections highlight key points of the methodology used in these modules. The 
source code for TOLSTOY, which is implemented in Python, is given in the Appendix.  
Complete information for preparing TOLSTOY input can be found in the introductory comments 
in each source code file; this paper is not intended to be documentation for using the code. 
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2.1 Transport methods 
One of the ways in which TOLSTOY is very much a toy is that it uses a geometry specified 

analytically in accordance with MCNP’s usual input file requirements, rather than real patient 
data from CT scans.  Thus, we (arbitrarily) allow the patient region of interest to be specified 
inside a 10x10x10 cm cube. Patient structures (organs) can be specified with three types of 
MCNP surfaces: spheres, ellipsoids, and infinite cylinders (i.e., cylinders that span the entire 
patient volume—we do not support cylindrical volumes whose ends lie in the region of interest). 
Surfaces that define target and sensitive tissue (see “Optimization formulation” below) are 
marked with special tags that the TOSTLOY parsing module recognizes and that specify 
information about the dose prescription for the organs that those surfaces define.  

The actual transport problems TOLSTOY solves with MCNP are very simple: a planar x-ray 
source travels through 95 cm of air and then enters the patient volume, depositing its energy via 
the usual photon-matter interactions (mostly Compton scattering). The source can be modeled 
however the user chooses to specify in the MCNP input file.   

In the problems presented here, we use a mono-directional, mono-energetic, “perfect BEV” 
source. The mono-directional approximation is a good one, since the x-ray beam gets collimated 
inside the linear accelerator that produces it. The mono-energetic approximation is not as good.  
Blanchard, et al. (Blanchard et al., 2006) discuss in some depth the challenges associated with 
modeling the bremsstrahlung process used to create x-rays. That source also gives x-ray spectra 
produced by two different linac target designs; one of these spectra could be approximated in 
MCNP as a piecewise-linear function of energy to give a more realistic treatment of the beam 
energy.  However, a mono-energetic source is acceptable for demonstration purposes. Finally, by 
“perfect BEV” above we mean that no effort is made to capture the geometry of the multi-leaf 
collimator; we simply specify that the shape of the planar source emerging from the MLC is the 
projection of the target structure onto the source plane.  Figure 3 illustrates the problem 
geometry. 
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Figure 3: Schematic of a typical treatment planning geometry, for a given 
angle. TOLSTOY sets up one such problem for each treatment angle, 
rotating the source plane about the x-axis. 

 

We collect the dose distribution data via an MCNP superimposed mesh tally (fmesh4) using 
the method suggested by Leone, et al. (Leone et al., 2005). The mesh tally splits the patient 
volume into a grid of (orthogonal) voxels and reports an x-ray flux in each one. We convert these 
fluxes to dose rates using a standard flux-to-dose table (ANS-6.1.1 Working Group, 1977) 
entered into the input file as a tally multiplier card.  This tally multiplier operates on the 
uncertainty values MCNP reports as well as on the actual dose rates. 

The only real work TOLSTOY does before running the transport problems is to create a new 
MCNP input file for each of the equally spaced beam angles. The number of angles is specified 
as input. TOLSTOY accomplishes this task by replacing a special placeholder in the given input 
file with a source transformation. This transformation rotates the source through an angle θ about 
the x-axis. Such a rotation can be described by the following matrix: 
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2.2 Computational geometry concerns 
As each transport problem runs, MCNP creates a mesh tally output file containing the dose 

rate distribution and associated uncertainty. These files get read by the TOLSTOY parsing 
module to create dose distribution matrices (see “Optimization formulation” below).  Two points 
about this process are worth noting. First, because of the multidimensional nature of the 
optimization problem we need to solve and the difficulty in handling multi-dimensionality in 
GAMS, we’ll actually vectorize the mesh tally grid and associated dose distribution matrices. To 
do so (and then to undo it when we’re ready to prepare a data file for plotting), we use the 
following standard transformations: 
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where i, j, and k are the matrix indices of the lth vector element, and I, J, and K are the number of 
mesh cells in the x, y, and z directions, respectively. 

Second, we need of way of distinguishing whether each vector element l lies in a target 
region, and sensitive organ region, or a tissue region. To perform this sort, we take advantage of 
the object-oriented capabilities of Python and create shape classes corresponding to the MCNP 
surfaces TOLSTOY supports for geometry specification. Thus, the parsing module must also 
read the original MCNP input file to create and store shapes associated with patient tissues. As it 
creates dose distribution matrices, it also checks whether element l is located in a “target shape” 
or “sensitive shape” (if neither is true, that element represents normal tissue). When it performs 
this check on all IJK voxels, it performs the simplest possible calculation and classifies the voxel 
based on the point at its center. Thus, a voxel could get classified as being in the target region 
even if it is not entirely in the target region. The treatment planning errors this decision 
introduces shrink as we let the mesh size get small, but this is nevertheless an important effect to 
keep in mind. 

2.3 Optimization formulation 

As in any optimization problem, conformal radiation treatment planning attempts to 
maximize or minimize some objective function subject to a list of constraints.  We choose the 
simplest such scheme suggested by Lim, et al. (Lim et al., 2002). This formulation can be 
expressed as a linear program1, a well studied class of optimization problem that can be solved 
very efficiently with CPLEX (ILOG, 2008). 

We’ll let T, S, and N denote the sets of voxels contained in target structures, sensitive 
structures, and normal tissue, respectively. Target structures are the tissue we want to irradiate; 

                                                 
1 The objective function of which provides the titular Linear Scoring in TOLSTOY. 
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sensitive structures are tissues whose dose we want especially to limit. Let A be the set of 
possible treatment angles. Let da be the matrix of dose rates delivered to the mesh cells (i,j,k) 
from angle a, where i Є {1,2,…I}, j Є {1,2,…J}, k Є {1,2,…K}. Let D be the weighted sum of 
these dose distribution matrices that represents the final treatment plan. The units of da are Gy/s, 
so we can let the angle-specific weights wa be a the time, in seconds, that the beam at angle a 
should be turned on.  Using this notation, we can formulate the problem for solving for the beam 
weights as follows: 

Aaw

dwDts

Df

a
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w
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All that remains is the choice of the function f. We must choose f so that it measures the 
deviation from the prescribed dose distribution. If we choose f to be a linear function, (3) is a 
linear program, and we can be sure CPLEX will return an optimal solution as long at the problem 
is feasible and bounded.  Thus, Lin, et al. suggest the following linear objective function (with 
additional constraint): 
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where DT, DS, and DN are the actual doses delivered to target, sensitive, and normal voxel sets, 
respectively, “card” denotes the cardinality operator (returns the number of elements in a set), 
and RxT and RxS are the dose prescription for the target cells and the dose limit for the sensitive 
cells, respectively (note that the D’s, Rx’s, and V’s are therefore vector quantities).  Thus, this 
objective function penalized under-dose and over-dose to the target, over-dose to the sensitive 
tissue, and any dose to the normal tissue. The vector (λT, λS, λN) (hereafter “the importance 
vector”) weights the relative importance of these three types of penalty. Thus, an importance 
vector of (1, 0, 1) only attempts to treat the target with the prescribed amount of radiation and to 
spare surrounding tissue to the extent possible, and it treats these goals as equally important. An 
importance vector of (1, 1, 1) adds the additional objective of trying to keep the dose to tissue in 
sensitive regions below some prescribed threshold. In a clinical setting, the radiation oncologist 
would make decisions about the dose prescriptions, sensitive limits, and importance vectors on a 
case-by-case basis. 

In TOLSTOY, the importance vector is specified by setting λT and λS and taking λN  to 
always equal one. As currently implemented, the code requires the target dose prescription, RxT, 
and sensitive limit, RxS, to be constant over the sets T and S, respectively, although one can 
certainly envision cases where some tissues are more sensitive than others. This choice was a 
matter of convenience and ease of implementation rather than a considered design decision, and 
it would be fairly easy to remedy.  See the introductory comment in source code file “parse.py” 
for more information. 
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2.4 Visualization 

There are two common visualization techniques used to review treatment plans; due to time 
constraints, we have only implemented one. The TOLSTOY plotting module currently supports 
plotting of dose distribution “slices.” In fact, it doesn’t really even plot these slices, it just creates 
a couple of data files (one in a column format suitable for gnuplot and one in a grid format 
suitable for MATLAB).  Nevertheless, TOLSTOY’s slice-plotting feature makes it possible to 
create dose contour plots that look very much like those used by treatment planners. Figure 4 
shows a sample dose contour plot over CT image data. 

 

 
Figure 4: Sample slice-based dose contour plot of a 
treatment plan for prostate cancer treatment. Isodose 
lines are overlaid over CT image. Image from (Rensselaer 
Polytechnic Institute, 2007). 

 

The second common visualization technique, which we might place at the top of a 
TOLSTOY “wish list,” is the so-called dose-volume histogram. This image plots volume fraction 
of the target versus dose delivered, which allows the oncologist to see how much of the target 
receives a given dose (see sample in Figure 5).  The data structures are certainly in place to 
implement a dose-volume histogram routine in TOLSTOY, we just ran out of time.  
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Figure 5: Sample dose-volume histogram comparing a number 
of different treatment plans. Image from (Math Resolutions, 
2003). 

 

3 RESULTS AND DISCUSSION 

3.1 Problem description 
This section will outline the results of an instructive test problem suggested by UW-Madison 

Computer Sciences Professor Robert Meyer, who is an active treatment planning researcher. In 
this prostate cancer problem, we will represent the target (prostate) as a sphere and the sensitive 
organs (bladder, rectum) as an ellipsoid and cylinder, respectively. We will use an image given in 
Wang, et al. (Wang et al., 2005) (see Figure 6) as our guide in building the geometry, and we will 
use the material data given in Usgaonker (Usgaonker, 2003). The geometry for this problem is 
specified in the sample input file in the Appendix and illustrated in Figures 7 and 8.  For all runs, 
we’ll let the dose prescription for the tumor be 60 Gy and the dose limit prescription for the 
sensitive organs be 5 Gy. 
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Figure 6: Real-world treatment planning model of prostate cancer 
patient. Numbered lines are optimal beam directions computed with an 
adjoint method. Image from (Wang et al., 2005). 
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Figure 7: Schematic of a geometry for prostate cancer problem, for a 
given angle (θ = 0). Red organs (bladder and rectum) comprise the 
sensitive volume, the green organ (prostate) is the target. 
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Figure 8: Slice through problem geometry at 
z = 0 cm. The magenta material is tissue, the 
blue, air. The organs shown are (from 
bottom-left) the bladder, prostate, and 
rectum. 

 

Careful examination of Figure 7 leads to an observation that adds another item to our 
hypothetical TOLSTOY wish list. Note that if we wanted to treat the bladder rather than the 
prostate, we would need to manually re-specify the source at each angle, since the projection of 
the bladder onto the source plane is not invariant under our x-axis rotation. However, TOLSTOY 
can perform as advertised for a single treatment organ that is both centered at the origin and 
symmetric about the x-axis. It would be a fairly modest extension of the current code to 
implement a means of relaxing this requirement by automating the creation of the MCNP source 
specification card itself instead of merely a transformation card for a user-specified source. 
Source sampling using so-called “cookie cutter rejection” would likely be useful for this task, 
though note that it would require moving some of the functions currently in the TOLSTOY 
parsing module into the transport module. 

3.2 Uncertainty analysis 

Speaking of symmetry, the symmetry of the target organ suggests a test run that will allow 
us to probe several important properties of this treatment planning implementation. For starters, 
recall that Monte Carlo methods require a large number of simulated particles in order to achieve 
validity to within some statistical tolerance. TOLSTOY reads but does not currently process the 
uncertainty data reported by the MCNP mesh tally. A rigorous implementation would require a 
cell-by-cell check to ensure that, for the number of particles simulated in a given run, the 
uncertainty in each voxel was acceptable.2 

Instead, we’ll do a numerical experiment on a problem we know the answer to, and we’ll 
check to see how our computed answer varies as a function of increasing number of simulated 
particles.  Consider a treatment plan with an importance vector of (1, 0, 1). If our only goal is to 
deliver some specified dose to the tumor cells and to minimize the dose to the normal tissue, then 
the optimal plan for a beam angle set that is symmetric with respect to the problem geometry is 
to have equal weights on each beam. If we let the number of angles equal four (or two), this 
symmetry requirement is met.  Thus, Figure 9 plots the computed beam weights for an MCNP 
problem size of n = {103, 104, 105, 106} simulated x-rays. Note that with increasing problem size, 
the computed beam weights get closer to being equal, as we’d expect. The uncertainty error 
manifests itself as unequal beam weights. Based on this test (and our desire to be able to run 
cases in a timely manner) we run most other problems with n = 5 x 105 particles and will leave a 
rigorous treatment of statistical uncertainty as an exercise to our hypothetical experiential 
learner. 

                                                 
2 In fact, careful inspection of the source code will reveal that I tried to do this but ran out of time 
trying to debug what I assume was some statistics-related flaw in my reasoning about what the 
uncertainty should be. Push it on the wish list, I guess. 
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Figure 9: Results of numerical experiment to observe the effect of statistical 
uncertainty in the Monte Carlo method. Note that the flatter lines represent 
the beam weights computed from the data with less statistical uncertainty. 
Problem symmetry dictates that the weights should be equal. 

 

3.3 Spatial fractionalization benefit 
Of course, this obstruction-less, symmetric problem and the assumption that we used to 

reason through it (i.e., that we know the objective function penalizes irradiation of normal tissue, 
so we want to minimize that penalty by spreading the dose out evenly over many angles) 
suggests another numerical experiment. By running problems with an increasing number of 
angles, we should be able to measure this “multiple-angles gain” using the objective function 
itself.  Thus, Figure 10 plots the optimal objective function for one-, two-, three-, and four-beam 
treatment plans. This plot is also pedagogically useful. It reinforces the point that the objective 
function isn’t some aphysical entity that just happens to help us find the right answer; it’s a score 
that can be computed for all feasible treatment plans. The lower the score, the better the plan. 
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Figure 10: Results of numerical experiment to observe the benefit of a larger 
number of treatment angles on the optimal plan’s objective function. 

 

Two questions come to mind here. The first is “Why not let the treatment angles vary 
continuously rather than discretely?” One might guess that much of the motivation for the 
development of intensity-modulated radiation therapy is tied up in that question, and one would 
hope that exploring treatment plans with TOLSTOY would help students perhaps come to ask 
this question on their own.  The second question is a finite version of the first: “Why didn’t you 
plot, say, five- or six-angle plans on this plot?” The answer to this second question brings us to 
another important area of investigation: mesh size. 

3.4 Mesh scaling difficulties and benefit 

The reason a five-angle plan isn’t plotted in Figure 10 is that the objective function actually 
didn’t improve as the five-angle problem was run. Why? Well, eventually adjacent beams start to 
overlap, and mesh cells that lie in the overlapping regions receive a “double dose,” which the 
objective function penalizes in kind. As we’ll see in a moment, though, a five-angle plan doesn’t 
actually introduce enough overlap to make such a plan disadvantageous. The problem is that, for 
the gigantic 1 cm mesh size, the overlap penalty gets artificially exaggerated. Unfortunately, 
smaller mesh sizes cause the optimization problem to exceed the constraint limit on the free trial 
version of GAMS/CPLEX, which is all the UW-Madison College of Engineering has installed on 
its machines. The CS department controls access to the full version, but their GAMS liaison is 
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understandably hesitant to disclose the UW-Madison research- and teaching-use GAMS license 
key so that the full version of can be run on CAE machines. Conversely, Los Alamos National 
Labs is understandably hesitant to allow MCNP to be installed on unauthorized machines (it 
might even be a federal offense).  The point is, this self-sufficient code becomes sort of an 
awkward monster when running finer-mesh problems. You have to run the transport calculations 
on CAE machines, then move everything over to CS machines and run the optimization 
calculations there. It can be (and indeed was) done, but it’s a huge time sink, and so we’ll limit 
the discussion of problems that require smaller mesh sizes.3 

The first demonstration that shrinking the mesh does indeed work (and does present all the 
accuracy benefits and execution-time detriments that one expects) is shown in Figure 11, where 
we give a comparison of our (1, 0, 1) importance vector problem run with four treatment angles 
and mesh sizes of 1 cm and 0.5 cm, respectively.  Note the improved smoothness of the isodose 
contours for the problem with the smaller mesh size. 

 

 

                                                 
3 Which, I have to admit, is pretty much all of them. 
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Figure 11: Slice-based isodose contour plots for the optimal treatment plans 
computed with mesh sizes of 1 cm (above) and 0.5 cm (below).  

 

Aside from the data porting issues, there are of course serious performance issues to 
consider as the mesh size gets closer to something that might be used in the real world.  Since 
this isn’t a high-performance computing class, we didn’t worry too much about performance, but 
it’s important to demonstrate that, given enough computing time, TOLSTOY could work on a 
larger scale problem.  Thus, Figure 12 plots the dose distribution and isodose contours4 for our 
(1, 0, 1) problem with a more realistic mesh size of 0.2 cm. In this case, the mesh size is small 
enough that the “artificial overlap penalty” effect discussed earlier goes away, and we get a final 
treatment plan that makes pretty full use of each beam in a five-beam problem. 

 

                                                 
4 The actual dose distribution map doesn’t seem to come up in a clinical context, but it just 
looked so cool in this case that I had to include it. 
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Figure 12: Dose distribution (above) and isodose contours (below) for (1, 0, 1) 
problem with 0.2 cm mesh size and five treatment angles. Note that Figure 12 
is starting to somewhat resemble the real-world isodose plot in Figure 4. 

 

3.5 Importance vector variation 
Lastly, we will address variation of the importance vector. After all, the choice of test 

problem was largely motivated by the desire to calculate treatment plans that spare sensitive 
tissue (i.e., the bladder and rectum).  Figure 13 plots the dose distribution and isodose contours 
for a problem with an importance vector of (1, 1, 1), five treatment angles, and a more modest 
0.4 cm mesh size. We’ve roughly sketched in the organs of interest in the isodose contour plot 
(compare again to Figure 4) to illustrate that TOLSTOY has done a reasonable job of sparing the 
sensitive tissue.  
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Figure 13: Dose distribution (above) and isodose contours (below) for (1, 1, 1) 
problem with 0.4 cm mesh size and five treatment angles. The contour plot 
also includes approximate sketches of the organs of interest. 

 

As we let all elements of the importance vector be non-zero, we start to better appreciate the 
complexity of the treatment planning optimization problem. Whereas for the previous runs we 
could have perhaps chosen beam weights (or at least relative beam weights) by inspection and 
done a pretty good job, here we calculate a result that is at first counterintuitive. While the 
optimal plan obviously succeeds at treating the prostate and sparing the rectum, is appears as if 
giving a large weight to the beam originating at “3:30” rather than the beam at “6 o’clock” would 
do a better job of sparing the bladder. However, the third component of the importance vector 
(the one that weights the penalty for not sparing normal tissue) is still non-zero in this run, and 
increasing the weight of the 3:30 beam would deliver an increased dose to the voxels in the 
upper-lefthand corner of the plot.   

We can support this claim by parametrically increasing the second component of the 
importance vector.  As the objective function treats sparing the rectum and bladder as an 
increasingly high priority goal relative to sparing normal tissue and delivering the correct dose to 
the tumor, the optimization routine returns plans that divert more weight from the 6 o’clock 
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beam to the 3:30 beam. This effect is captured visually in Figure 14, which plots isodose 
contours for problems with importance vectors of (1, 1, 1), (1, 2, 1), and (1, 3, 1), respectively. 
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Figure 14: Isodose contours for parametrically increasing 
values of the second importance vector component: (1, 1, 1), 
top; (1, 2, 1), middle; (1, 3, 1), bottom. Note the final plan’s 
willingness to just absolutely fry the tissue in the top left 
portion of the plot in the name of sparing the sensitive organs. 

 

4 CONCLUSIONS AND FUTURE WORK 

Hopefully, the previous section indicates some of the technical power of this admittedly 
low-performance tool. With even just a few modest generalizations and performance 
enhancements (or with just a bunch of patience and available computer time) some fairly 
complex treatment planning problems could be studied—limited in the end by one’s ability (and 
patience) to specify the relevant geometries in MCNP. 

More important, though, is the value of having a flexible demonstration tool that straddles 
the authenticity/accessibility spectrum and can serve a variety of pedagogical purposes. One can 
certainly imagine the value of a learning experience in which students get to play around with 
one of these toy problems, observing the effects of varying the mesh size, the number of 
treatment angles, the importance vectors, etc. Many of TOLSTOY’s weakness can be viewed as 
strengths when one considers how difficult it would be to create a comparable learning 
environment with real-world tools. It seems reasonable to assert that a tool like TOLSTOY 
isolates and illustrates the concepts involved in performing treatment planning calculations better 
than a more strictly authentic tool could. Making an analogy to NE 705 material, it’s fair to say 
that students learned more about discrete ordinate concepts by playing with the 1-D MATLAB 
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code we used for homework than by learning how to write an input file for a commercial code. 
Moreover, if one’s pedagogical objectives include giving students some experience actually 
developing software (rather than just using it), having a toy program to work from is almost 
essential, since just understanding the source code of a commercial tool, let alone the underlying 
methods, requires a huge investment of time and mental effort.  
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APPENDIX: COMPLETE TOLSTOY SOURCE CODE 

Sample input file 

 
c MCNP input file for generating BEV dose distribution matrices  
c for treatment optimization on spherical tumor with sensitive organs 
c  
c NOTE: USER IS RESPONSIBLE FOR SPECIFYING CELLS AND SURFACES FOR 
PROBLEM 
c GEOMETRY, THE BEV X-RAY SOURCE ITSELF, AND THE MESH SIZE. SEE 
tolstoy.py AND 
c parse.py FOR MORE INFORMATION ABOUT INPUT FILE PREPARATION 
c 
c Created by Kyle Oliver 3/3/08 
c Revised 5/12/08 
c  
c Importance vector: (1, 1, 1) 
c Mesh size: 0.5 cm 
c 
c Target prescription: 60 Gy 
c Sensitive limit: 5 Gy 
c 
c Cells 
1  1  -1.04     -301  103 -104  $ rectum 
2  1  -1.04     -302            $ bladder 
3  1  -1.04     -201            $ prostate 
4  1  -1.04      301  302  201  $ rest of patient 
                 101 -102  
                 103 -104  
                 105 -106  
5  2 -0.001020  -401            $ air 
              ( -101: 102: 
                -103: 104: 
                -105: 106) 
6  0             401            $ rest of universe 
 
c Surfaces 
c Patient 
101      pz  -5 
102      pz   5 
103      px  -5 
104      px   5 
105      py  -5 
106      py   5 
c TREAT_ORGS 1 60 1 
201      so   1                              $ prostate  
c SENS_ORGS 2 5 0 
301      c/x  1.75 1.75  0.75                $ rectum 
302      sq   1 0.25 1 0 0 0 -1 0.5 -2 -1.5  $ bladder 
c Problem boundary 
401      so   106 
 
c Materials 
c  
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c Adult tissue (density = 1.04 g/cc) 
m1   1001   -0.10454 
     6000   -0.22663 
     7014   -0.02490 
     8016   -0.63525 
     11023  -0.00112 
     12000  -0.00013 
     14000  -0.00030 
     15031  -0.00134 
     16000  -0.00204 
     17000  -0.00133 
     19000  -0.00208 
     20000  -0.00024 
     26000  -0.00005 
     30000  -0.00003 
     37085  -0.00001 
     40000  -0.00001 
c  
c Air (density = 0.001020 g/cc) 
m2   6000 -0.00012 
     7014 -0.75527 
     8016 -0.23178 
     18000 -0.01283 
c  
c Source definition 
sdef  erg = 0.5 pos = 0 0 -100 tr  = 1 
      par = 2   vec = 0 0  1   dir = 1  
      ext = 0   axs = 0 0  1   rad = d1 
c  
c Source transformation 
SRC_TRANS 
c default: tr1  0 0 0  1 0 0  0 1 0  0 0 1  1 
c  
c Source distribution (uniform in x direction) 
si1  0 1 
sp1  -21 1 
c 
c Mode specification: photon mode 
mode p 
c  
c Variance reduction 
imp:p 1 1 1 1 1 0 
c  
c Scoring 
c  
fmesh4:p geom = xyz origin = -5 -5 -5 $ Mesh over patient 
         imesh = 5 iints = 11 $ x mesh size 
         jmesh = 5 jints = 11 $ y mesh size 
         kmesh = 5 kints = 11 $ z mesh size 
         out = ij $ gives 2-D x-y matrices 
c  
fc4 Dose mesh tally computed with ANSI/ANS conversion factors 
c 
de4 log  0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
0.50 
         0.55 0.60 0.65 0.70 0.80 1.00 $ MeV 
c  
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df4 log  3.96e-6 5.82e-7 2.90e-7 2.58e-7 2.83e-7 3.79e-7 5.01e-7 6.31e-7 
         7.59e-7 8.78e-7 9.85e-7 1.08e-6 1.17e-6 1.27e-6 1.36e-6 1.44e-6 
         1.52e-6 1.68e-6 1.98e-6 $ (rem/hr)/(p/cm^2-s) 
c  
c Number of particles 
nps 500000 
 

Template that the planning module uses to build the GAMS input file 
 
$ontext 
 
template.gms 
 
A template from which to build GAMS input files for treatment planning. 
 
$offtext 
 
sets t "target voxels" 
   / TAR_SET / 
   s "sensitive voxels" 
   / SENS_SET / 
   n "normal voxels" 
   / NORM_SET / 
   a "treatment angles" 
   / ANG_SET / ; 
 
parameters th "target dose prescription" 
      phi "sensitive dose limit" 
      imp_t "target plan importance" 
      imp_s "sensitive plan importance" 
      imp_n "normal plan importance" ; 
 
th = THETA_VAL ; 
phi = PHI_VAL ; 
 
imp_t = TAR_IMP ; 
imp_s = SENS_IMP ; 
imp_n = NORM_IMP ; 
 
table Dt(t, a) angle-specific dose distribution in target voxels 
 
TAR_TABLE ; 
 
table Ds(s, a) angle-specific dose distribution in sensitive voxels 
 
SENS_TABLE ; 
 
table Dn(n, a) angle-specific dose distribution in normal voxels 
 
NORM_TABLE ; 
 
 
positive variables w(a) "treatment angle weights" ;    
 
free variables score "plan-specific objective function" 
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        Vt(t) "target prescription 
violation" 
        Vs(s) "sensitive prescription 
violation" ; 
equations 
 
    tv1(t) "penalize overdose" 
    tv2(t) "penalize underdose" 
    sv1(s) "penalize overdose" 
    sv2(s) "no penalty below sensitive limit" 
    obj "objective function" ; 
 
tv1(t).. 
 
    Vt(t) =g= sum(a, Dt(t, a) * w(a)) - th ; 
 
tv2(t).. 
 
e    Vt(t) =g= th - sum(a, Dt(t, a) * w(a)) ; 
 
sv1(s).. 
 
    Vs(s) =g= sum(a, Ds(s, a) * w(a)) - phi ; 
 
sv2(s).. 
 
    Vs(s) =g= 0 ; 
 
obj.. 
 
    score =e= 
    imp_t * sum(t, Vt(t)) / card(t) +  imp_s * 
sum(s, Vs(s)) / card(s) + 
    imp_n * sum(n, sum(a, Dn(n, a))) / card(n) ; 
 
model dose_opt /all/ ; 
 
solve dose_opt using lp minimizing score ; 
 

Main program 
 

# tolstoy.py 
 
# The application wrapper for the modules in the TOLSTOY treatment 
planning 
# tool. 
 
import sys, xport, parse, plan, plot, math, pickle 
 
# Check number of arguments; individual modules will check argument 
content. 
if len(sys.argv) != 4 : 
 print "\nUsage: python tolstoy.py inputFile numAngles fluence" 
 sys.exit(0) 
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mcFile = sys.argv[1] 
numAngs = sys.argv[2] 
fluence = sys.argv[3] 
 
# Note the filenames for the modules 
xName = "xport.py" 
parName = "parse.py" 
plaName = "plan.py" 
ploName = "plot.py" 
 
# Run the transport module 
xport.run([xName, mcFile, numAngs]) 
 
# Run the parsing module 
 
 
#T, S, N, DDMs, DDMErrs, mmm, MMM, IJK = parse.run([parName, mcFile, 
numAngs, fluence]) 
 
mmm, MMM, IJK = parse.run([parName, mcFile, numAngs, fluence]) 
 
# Run the planning module 
w, obj = plan.run([plaName, mcFile, numAngs]) 
 
print "weights: " 
weights = w.keys() 
for i in weights : 
 print i, " = ", "%e" % w[i] 
 
# Calculate the total dose rates and errors using the weights. Don't 
forget 
# to sum errors in quadrature. 
 
Tf = open("tar.vxl", "r") 
Sf = open("sens.vxl", "r") 
Nf = open("norm.vxl", "r") 
DDMf = open("norm.ddm", "r") 
DDEf = open("norm.dde", "r") 
 
T = pickle.load(Tf) 
S = pickle.load(Sf) 
N = pickle.load(Nf) 
DDMs = pickle.load(DDMf) 
DDErrs = pickle.load(DDEf) 
 
# Initialize. 
DM_tot = {} 
DMErr_tot = {} 
for l in DDMs[0].keys() : 
 DM_tot[l] = 0 
 DMErr_tot[l] = 0 
 
# Sum. 
for l in DDMs[0].keys() : 
 
 for i, x in enumerate(DDMs) : 
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  DM_tot[l] = DM_tot[l] + x[l] * w[i] 
  DMErr_tot[l] = DMErr_tot[l] + math.pow(DDErrs[i][l]/ 100 * 
w[i], 2) # quad. 
 
 DMErr_tot[l] = math.sqrt(DMErr_tot[l]) 
 
# Plot the angle-specific DDMs if desired. 
for i in range(0, int(numAngs)) : 
 plot.run([ploName, "ang" + str(i), "slice", DDMs[i], mmm, MMM, 
IJK, 0]) 
 
# Run the plotting module. 
plot.run([ploName, mcFile, "slice", DM_tot, mmm, MMM, IJK, 0]) 
 

Transport module 
 

# xport.py 
# Runs the transport calculations necessary for a dose optimization routine, 
# given a specially formatted MCNP input file as the first argument and a  
# number of angles for which to generate dose distribution data at the second 
# argument. 
 
# The input file must contain a  treatment area centered at 
# the origin. The source will be rotated through the given number of angles  
# about the x axis. Thus, it should be defined with respect to an MCNP  
# transformation tr1, which will be inserted at the SRC_TRANS placeholder.  
# The presence of this placeholder is not checked, though failure to define  
# it will crash MCNP. 
# 
# The treatment area must be covered by a uniformly spaced mesh tally that  
# corresponds to the voxelization. It should use the appropriate tally  
# multiplier card to convert to dose units. 
# 
 
# See parse.py for notes on special handling of the formatting at and near 
# the surface cards defining the treatment and sensitive organs. 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Functions 
 
# Creates an MCNP geometry transformation card for rotation about the x-axis 
# by the given angle (in radians) 
 
def makeTrans(theta) : 
  
 pt1 = "tr1 0 0 0  1 0 0  0 " 
 pt2 = str(round(math.cos(theta), 4)) + " " 
 pt3 = str(round(0 - math.sin(theta), 4)) + "  0 " 
 pt4 = str(round(math.sin(theta), 4)) + " " 
 pt5 = str(round(math.cos(theta), 4)) + "  1" 
 
 return pt1 + pt2 + pt3 + pt4 + pt5 
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# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Get modules we need 
import sys, os, shutil, math 
 
def run(argv) : 
 
 # Check arguments 
 if len(argv) != 3 : 
  print "\nUsage: python xport.py inputFile numAngles" 
  sys.exit(0) 
 if int(argv[2]) < 1 or int(argv[2]) > 10 : 
  print "\nError: must run between one and ten angles" 
  sys.exit(0) 
 mcInp = argv[1] 
 numAngs = int(argv[2]) 
 
 # Do some file cleanup in case of previous runs in this directory 
 print "\nCleaning up old files" 
 mcFiles = ["out", ".out", ".sav", "runtp", "mesh", mcInp + "o", mcInp + 
"r", ".gms", ".lst"] 
 thisDur = "./" 
 
 for file in os.listdir(thisDur) : 
  for name in mcFiles : 
   if file.find(name) >= 0 : 
    os.remove(file) 
 
 # Run MCNP on the given input file if it exists (for the given number of  
 # angles), or exit 
 if not os.path.exists(argv[1]) : 
  print "\nError: missing input file" 
  sys.exit(0) 
 
 mcProg = "mcnp5" 
 print "\nRunning MCNP" 
 
 # Calculate the theta increment for the number of angles specified. 
 th_incr = 2 * math.pi / numAngs 
 
 for i in range(0, numAngs) : 
 
  # Make a new input file name for the one with angle-specific 
alterations. 
  mcInpAng = mcInp + str(i) 
 
  # Replace the source transformation placeholder in the original input 
file. 
  fileIn = open(mcInp) 
  text = fileIn.read() 
  textAng = text.replace("SRC_TRANS", makeTrans(i * th_incr)) 
  fileAng = open(mcInpAng, 'w') 
  fileAng.write(textAng) 
  fileIn.close() 
  fileAng.close() 
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  # Do some more file cleanup so we don't crash MCNP. 
  try : 
   os.remove(mcInpAng + "o") 
   os.remove(mcInpAng + "r") 
   os.remove(mcInpAng + "m") 
  except OSError : 
   pass 
 
  # Do the run. 
  mcArg = "name=" + mcInpAng 
  (runIn, runOut) = os.popen4(mcProg + " " + mcArg) 
  print runOut.read() 
 
  # More file cleanup. 
  try : 
   os.rename("meshtal", mcInpAng + "m") 
  except OSError: 
   print "\nError: No mesh tally file created" 
   sys.exit(0) 

Parsing module 
 
# parse.py 
 
# Parses the MCNP mesh tally files generated from the given MCNP input file,  
# number of angles, and treatment beam fluence,  and creates a GAMS input 
file 
# for the optimization routine. To do so, it must also read the MCNP 
geometry. 
# 
# Treatment and sensitive organs are parsed by reading the sphere, cylinder, 
# and ellipsoid surfaces immediately following the comment lines 
# 
# c SENS_ORGS num sensLim sensImp 
# and 
# c TREAT_ORGS num treatRx treatImp 
# 
# where num is the number of surface specification lines that follow these 
# tagged lines. No checking is done to confirm that these organ surfaces are  
# entirely within the patient volume or that MCNP sq surfaces are ellipsoids  
# and not hyper- or para-boloids. Also, ellipsoids must have axes parallel  
# to the main coordinate axes. Mesh elements are considered to be contained  
# by the organ if their center point is contained by the organ. 
# 
# sensLim is the desired limit on dose rate to the sensitive tissue, sensImp 
is 
# the relative importance of this limit (see main reference), treatRx is 
# the desired dose to the treatment region, and treatImp is the relative 
# imporance of this limit (by default, the relative importance of sparing 
# normal tissue is 1) 
 
 
# Get modules we need 
import sys, os, shutil, math, re, string, pickle 
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# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Classes 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Shape is parent to Spheres, Cylinders, Ellipsoids 
class Shape(object) : 
 def contains(self, x, y, z) : 
  raise GeoException, "Can't call contains() on abstract class" 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Sphere class suppors MCNP surfaces so, s, sx, sy, sz 
class Sphere(Shape) : 
 
 # Data members 
 x0 = 0 
 y0 = 0 
 z0 = 0 
 r = 0 
  
 # Methods 
 def __init__(self, rad, tag = "", bar1 = 0, bar2 = 0, bar3 = 0) : 
  self.r = rad 
   
  if tag == "s" or tag == "S" : 
   self.x0 = bar1 
   self.y0 = bar2 
   self.z0 = bar3 
 
  elif tag != "" :  
   if re.search(r'sx', tag, re.IGNORECASE) : self.x0 = bar1 
   elif re.search(r'sy', tag, re.IGNORECASE) : self.y0 = bar1 
   elif re.search(r'sz', tag, re.IGNORECASE) : self.z0 = bar1 
   elif re.search(r'so', tag, re.IGNORECASE) : pass 
   else : raise GeoException, "Illegal sphere constructor call" 
 
 def contains(self, x, y, z) : 
  dx = x - self.x0 
  dy = y - self.y0 
  dz = z - self.z0 
  LHS = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2) + math.pow(dz, 2)) 
  return LHS < self.r 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Cylinder class supports MCNP surfaces c/x, c/y, c/z, cx, cy, cz 
class Cylinder(Shape) :  
 
 # Data members 
 axis = "" 
 r = 0 
 oc1 = 0 
 oc2 = 0 
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 # Methods 
 def __init__(self, tag, rad, offCoord1 = 0, offCoord2 = 0) : 
  if offCoord1 != 0 and offCoord2 != 0 and tag.find("/") == -1 : 
   raise GeoException, "Illegal cylinder constructor call" 
 
  if re.search(r'[cx/]', tag, re.IGNORECASE) : self.axis = "x" 
  elif re.search(r'[cy/]', tag, re.IGNORECASE) : self.axis = "y" 
  elif re.search(r'[cz/]', tag, re.IGNORECASE) : self.axis = "z" 
  else : raise GeoException, "Illegal cylinder constructor call" 
 
  self.r = rad 
  self.oc1 = offCoord1 
  self.oc2 = offCoord2 
 
 def contains(self, x, y, z) : 
  if self.axis == "x" : 
   d1 = y - self.oc1 
   d2 = z - self.oc2 
  elif axis == "y" :  
   d1 = x - self.oc1 
   d2 = z - self.oc2 
  else : 
   d1 = x - self.oc1 
   d2 = y - self.oc2 
  return math.sqrt(pow(d1, 2) + pow(d2, 2)) < self.r   
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Ellipsoid class supports MCNP surface sq but does not check that the  
# parameters given truly define an ellipsoid and not a hyper- or para-boloid. 
class Ellipsoid(Shape) : 
  
 # Data members 
 A = 0  
 B = 0  
 C = 0  
 G = 0 
 x0 = 0 
 y0 = 0 
 z0 = 0 
  
 # Methods 
 def __init__(self, xS, yS, zS, gTerm, xBar, yBar, zBar) :  
  self.A = xS 
  self.B = yS 
  self.C = zS 
  self.G = gTerm 
  self.x0 = xBar 
  self.y0 = yBar 
  self.z0 = zBar 
 
 def contains(self, x, y, z) : 
  xTerm = self.A * pow((x - self.x0), 2) 
  yTerm = self.B * pow((y - self.y0), 2) 
  zTerm = self.C * pow((z - self.z0), 2) 
  return xTerm + yTerm + zTerm + self.G < 0 
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# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# Functions 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# makeShape() accepts a line from the MCNP input file and returns the  
# corresponding Shape object 
 
def makeShape(s) :  
 args = re.split(r'\s*', s) 
 shType = args[1].lower() 
 for i in range(2, len(args)) : 
  try : args[i] = float(args[i]) 
  except ValueError : pass 
 
 # Figure out what type of Shape it is and call the appropriate 
constructor. 
 if shType == "so" : 
  return Sphere(args[2]) 
 
 elif shType == "s" : 
  return Sphere(args[2], args[1], args[3], args[4], args[5]) 
 
 elif shType == "sx" or shType == "sy" or shType == "sz" : 
  return Sphere(args[2], args[1], args[3]) 
 
 elif shType.find("c/") != -1 : 
  return Cylinder(args[1], args[2], args[3], args[4]) 
 
 elif shType == "cx" or shType == "cy" or shType == "cz" : 
  return Cylinder(args[1], args[2]) 
 
 elif shType == "sq" : 
  return Ellipsoid(args[2], args[3], args[4], args[8], args[9], args[10], 
args[11]) 
 
 else : 
  raise SystemExit("Error: unsupported surface shape specified: ") 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
# makeTable() constructs a table for entering angle-specific dose 
# distribution information into GAMS. 
 
def makeTable(set, doses) : 
 
 s13 = "             " 
 s12 = "            " 
 s11 = "           " 
 s10 = "          " 
 s9  = "         " 
 s8  = "        " 
 s7  = "       " 
 s6  = "      " 
 s5  = "     " 
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 s4  = "    " 
 s3  = "   " 
 s2  = "  " 
 s1  = " " 
 tbl = s12 
  
 
 # Create the labels we need. 
 for lab, a in enumerate(doses) : 
  tbl = tbl + str(lab) + s12 
 
 tbl = tbl + "\n" 
 
 #Iterate over the voxels in the set. 
 for l in set : 
  if   l < 10          : tbl = tbl + str(l) + s11 
  elif l < 100         : tbl = tbl + str(l) + s10 
  elif l < 1000        : tbl = tbl + str(l) + s9 
  elif l < 10000       : tbl = tbl + str(l) + s8 
  elif l < 100000      : tbl = tbl + str(l) + s7 
  elif l < 1000000     : tbl = tbl + str(l) + s6 
  elif l < 10000000    : tbl = tbl + str(l) + s5 
  elif l < 100000000   : tbl = tbl + str(l) + s4 
  elif l < 1000000000  : tbl = tbl + str(l) + s3 
  elif l < 10000000000 : tbl = tbl + str(l) + s2 
  else : raise SystemExit("Error: Too many voxels") 
 
  #Iterate over angels in the DDM list. 
  for a in doses : 
   elt = '%e' % a[l] 
   tbl = tbl + elt + s1 
    
  tbl = tbl + "\n" 
 
 return tbl 
 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
def run(argv) : 
 
 # Check arguments 
 if len(argv) != 4 : 
  print "\nUsage: python parse.py inputFile numAngles fluence" 
  sys.exit(0) 
 if int(argv[2]) < 1 : 
  print "\nError: must run at least one angle" 
  sys.exit(0) 
 mcInp = argv[1] 
 numAngs = int(argv[2]) 
 fluence = float(argv[3]) # photons / cm^2 / s 
 srcArea = 100 # cm^2 
 
 # Grab and sort the files we need. 
 meshFiles = [] 
 thisDur = "./" 
 for file in os.listdir(thisDur) : 
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  match = re.search(r'[0-9]m\Z', file) 
  if match : meshFiles.append(file) 
 
 if len(meshFiles) == 0 : 
  print "Error: couldn't find mesh tally files." 
  sys.exit(0) 
 
 meshFiles.sort() 
 meshFiles = meshFiles[0:numAngs] 
 
 # Get info about the mesh. (The following is inelegant, but it works.) 
 mcText = open(mcInp).read() 
 
 match = re.search(r'iints\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : I = int(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: iints undefined") 
 
 match = re.search(r'jints\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : J = int(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: jints undefined") 
 
 match = re.search(r'kints\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : K = int(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: kints undefined") 
 
 match = re.search(r'imesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : xM = float(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: imesh undefined") 
 
 match = re.search(r'jmesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : yM = float(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: jmesh undefined") 
 
 match = re.search(r'kmesh\s*=\s*(.*?)\s', mcText, re.IGNORECASE) 
 if match : zM = float(match.group(1)) 
 else : raise SystemExit("Error in MCNP input file: kmesh undefined") 
 
 match = re.search(r'origin\s*=\s*([0-9\s-]*)', mcText, re.IGNORECASE) 
 if match :  
  coords = match.group(1) 
  vals = re.split(r'\s', coords, 2) 
  xm = float(vals[0]) 
  ym = float(vals[1]) 
  zm = float(vals[2]) 
 else :  raise SystemExit("Error in MCNP input file: origin undefined") 
 
 dx = (xM - xm) / I 
 dy = (yM - ym) / J 
 dz = (zM - zm) / K 
 
 # Get info about the rest of the geometry and dose prescription. First, 
 # figure out where the lines we need are. 
 
 mcLines = (open(mcInp)).readlines() 
 
 numTreat = 0 
 numSens = 0 
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 tLine = -1 
 sLine = -1 
 
 tRx = 0 # prescribed dose for treatment regions 
 tImp = 0 # importance of treatment prescription 
 sLim = 0 # dose limit for sensitive tissue 
 sImp = 0 # importance of sensitive tissue dose limit 
 nImp = 1 # importance of sparing normal tissue (1 is default) 
 
 
 # Look for the markers and read the numbers that follow. 
 for i, x in enumerate(mcLines) : 
  if x.find("c TREAT_ORGS") >= 0 : 
   try :  
    tLine = i + 1 
    tTokens = re.split('\s', x) 
    numTreat = int(tTokens[2]) 
    tRx = float(tTokens[3]) 
    tImp = float(tTokens[4]) 
 
   except Error : 
    raise SystemExit("Error: bad formatting near TREAT_ORGS") 
 
  if x.find("c SENS_ORGS") >= 0 : 
   try :  
    sLine = i + 1 
    sTokens = re.split('\s', x) 
    numSens = int(sTokens[2]) 
    sLim = float(sTokens[3]) 
    sImp = float(sTokens[4]) 
 
   except Error : 
    raise SystemExit("Error: bad formatting near SENS_ORGS") 
 
 if numTreat == 0 and numSens == 0 : 
  raise SystemExit("Error: no optimization constraints defined") 
 
 # Next, read the lines and create the Shapes. 
 
 tShapes = [] 
 tCount = numTreat 
 while tCount > 0 : 
  tShapes.append(makeShape(mcLines[tLine])) 
  tLine = tLine + 1 
  tCount = tCount -1 
 
 sShapes = [] 
 sCount = numSens 
 while sCount > 0 : 
  sShapes.append(makeShape(mcLines[sLine])) 
  sLine = sLine + 1 
  sCount = sCount -1 
 
 # Create dose distribution matrices. We'll actually make these 
 # vector-like, since that will be way easier to pass to GAMS. We'll 
 # map the mesh point (i,j,k) onto (l) to make the set one-dimensional: 
 # l = i + I(j-1) + IJ(k-1) 
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 DDMs = [] # list of dose distribution matrices 
 DDMErrs = [] # list of dose distribution matrices' error 
 
 # A note on units: Now, the units in the mesh tally are rem*s/h/particle. 
 # We need to get to a dose rate of Gy/s, so our conversion factor will be 
 # the fluence times the beam x-section times some conversion to fix the 
time 
 # and dose units: 
 
 conv = fluence * srcArea / 3600 / 100 
 
 for mFile in meshFiles : 
 
  fDDM = {} 
  fDDMErr = {} 
 
  mLines = (open(mFile)).readlines() 
  lNum = 0 
  i = 1 
  j = 1 
  k = 1 
  while lNum < len(mLines) : 
   if mLines[lNum].find("Tally Results:") != -1 : 
 
    while j <= J : 
     dTokens = re.split(r'\s*', mLines[lNum + 1 + j]) 
     eTokens = re.split(r'\s*', mLines[lNum + 4 + j + J]) 
 
     while i <= I : 
 
      l = i + I * (j - 1) + I * J * (k - 1) 
      fDDM[l] = float(dTokens[i+1]) * conv 
      fDDMErr[l] = float(eTokens[i+1]) * conv 
      i = i + 1 
 
     i = 1 
     j = j + 1 
 
    i = 1 
    j = 1 
    k = k + 1 
    lNum = lNum + 5 + 2 * J 
 
   else : 
    lNum = lNum + 1 
 
  DDMs.append(fDDM) 
  DDMErrs.append(fDDMErr) 
 
 # Need to sort mesh points into three different sets: T, S, N (see 
 # formulation reference).  
 
 # Sets 
 T = [] 
 S = [] 
 N = [] 
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 for k in range(1, K + 1) : 
  for j in range(1, J + 1) :  
   for i in range(1, I + 1) : 
    vPlaced = False 
    l = i + I * (j - 1) + I * J * (k - 1) 
    x = xm + dx / 2 + dx * (i - 1) 
    y = ym + dy / 2 + dy * (j - 1) 
    z = zm + dz / 2 + dz * (k - 1) 
 
    for sh in tShapes : 
     if sh.contains(x, y, z) :  
      if vPlaced == True : 
       raise GeoException, "Error: voxel 
contained by multiple shapes." 
      else : 
       vPlaced = True 
       T.append(l) 
 
    if False == vPlaced : 
     for sh in sShapes :  
      if sh.contains(x, y, z) :  
       if True == vPlaced :  
        raise GeoException, "Error: voxel 
contained by multiple shapes." 
       else : 
        vPlaced = True 
        S.append(l) 
 
    if False == vPlaced : N.append(l) 
 
 # OK, now we've got everything we need to make the GAMS input file. Let's 
do 
 # it. 
 
 # Copy from the template. 
 gStr = open("GAMS_TMPL").read() 
 if gStr == "" : 
  raise SystemExit("Error: bad GAMS_TMPL file") 
 
 # Now replace the placeholders with the stuff we need. 
 
 # Create the sets. 
 TAR_REPL = "" 
 for l in T : 
  newV = str(l) + ",\n" 
  TAR_REPL = TAR_REPL + newV 
 TAR_REPL = TAR_REPL[0:len(TAR_REPL)-2] 
 gStr = gStr.replace("TAR_SET", TAR_REPL) 
 
 SENS_REPL = "" 
 for l in S : 
  newV = str(l) + ",\n" 
  SENS_REPL = SENS_REPL + newV 
 SENS_REPL = SENS_REPL[0:len(SENS_REPL)-2] 
 gStr = gStr.replace("SENS_SET", SENS_REPL) 
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 NORM_REPL = "" 
 for l in N : 
  newV = str(l) + ",\n" 
  NORM_REPL = NORM_REPL + newV 
 NORM_REPL = NORM_REPL[0:len(NORM_REPL)-2] 
 gStr = gStr.replace("NORM_SET", NORM_REPL) 
 
 ANG_REPL = "" 
 for l in range(0, numAngs) : 
  ANG_REPL = ANG_REPL + str(l) + ", " 
 ANG_REPL = ANG_REPL[0:len(ANG_REPL)-2] 
 gStr = gStr.replace("ANG_SET", ANG_REPL) 
 
 # Replace the prescription, dose limit, importance placeholders 
 gStr = gStr.replace("THETA_VAL", str(tRx)) 
 gStr = gStr.replace("PHI_VAL", str(sLim)) 
 gStr = gStr.replace("TAR_IMP", str(tImp)) 
 gStr = gStr.replace("SENS_IMP", str(sImp)) 
 gStr = gStr.replace("NORM_IMP", str(nImp)) 
 
 # Replace the table placeholders 
 
 gStr = gStr.replace("TAR_TABLE", makeTable(T, DDMs)) 
 gStr = gStr.replace("SENS_TABLE", makeTable(S, DDMs)) 
 gStr = gStr.replace("NORM_TABLE", makeTable(N, DDMs)) 
 
 # Write the actual GAMS file. 
 
 gFile = open(mcInp + ".gms",'w') 
 gFile.write(gStr) 
 gFile.close() 
 
 Tf = open("tar.vxl", "w") 
 Sf = open("sens.vxl", "w") 
 Nf = open("norm.vxl", "w") 
 DDMf = open("norm.ddm", "w") 
 DDEf = open("norm.dde", "w") 
 
 pickle.dump(T, Tf) 
 pickle.dump(S, Sf) 
 pickle.dump(N, Nf) 
 pickle.dump(DDMs, DDMf) 
 pickle.dump(DDMErrs, DDEf) 
 
 return ((xm, ym, zm), (xM, yM, zM), (I, J, K)) 
 

Planning module 
 
# plan.py 
 
# Runs GAMS on the input file generated by the given MCNP treatment planning 
# input file. 
 
import sys, os, shutil, math 
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def run(argv) : 
 
 # Check arguments 
 if len(argv) != 3 : 
  print "\nUsage: python plan.py inputFile numAngs" 
  sys.exit(0) 
 if int(argv[2]) < 1 : 
  print "\nError: must run at least one angle" 
  sys.exit(0) 
 mcInp = argv[1] 
 numAngs = int(argv[2]) 
 
 # Run GAMS 
 
 gProg = "gams" 
 gArg = mcInp + ".gms" 
 
 (runIn, runOut) = os.popen4(gProg + " " + gArg) 
 print runOut.read() 
 
 # Extract weights if they're there. Report errors if they exist. 
 gOut = mcInp + ".lst" 
 
 gStr = open(gOut).read() 
 if gStr == "" : 
  raise SystemExit("Error: bad " + gStr + " file") 
 if gStr.find("Optimal solution found.") == -1 : 
  raise SystemExit("Could not find optimal treatment plan as specified.") 
 gLines = open(gOut).readlines() 
 
 # Define number of lines in a page-break message. 
 numBrLines = 9 
 
 # Find the placeholder. 
 for i, x in enumerate(gLines) : 
  if x.find("---- VAR w  treatment angle weights") != -1 : 
   wLines = range(i + 4, i + 4 + numAngs + numBrLines) 
   # last term accounts for if there's a page break 
 
 w = {} 
 bCol = 23 # "hundred digit" of the weight is here, if this weight is non-
zero 
 eCol = 31 # column "just past" the end of the weight, if this weight is n-
z 
 pCol = 26 # column where the period is 
 
 for i in wLines : 
  lStr = gLines[i] 
 
  try :  
   ss = int(lStr[0:1]) #subscript (of w) 
    
   if lStr[pCol-1:pCol+2] == " . " : # means this weight is zero 
    w[ss] = 0 
   else : 
    val = lStr[bCol:eCol] 
    w[ss] = float(val) 
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  except ValueError : 
   pass 
 
 # Extract the objective function. 
 
 # Find the placeholder. 
 for i, x in enumerate(gLines) : 
  if x.find("Objective :        ") != -1 : 
   oLine = i 
 
 
 # Get the value. 
 bCol = 22 
 eCol = 30 
 val = (gLines[oLine])[22:30] 
 obj = float(val) 
 
 return (w, obj) 
 

Plotting module 
 
# plot.py 
 
# Plots the given data given some plotting option. 
 
# Get modules we need 
import sys, os, shutil, math, re, string 
 
def run(argv) : 
 
 # Check arguments 
 if len(argv) != 8 : 
  print "\nUsage: python plot.py inputFile plotOpt doses geo optPar" 
  sys.exit(0) 
 if argv[2] != "slice" and argv[2] != "hist" : 
  print "\nError: bad plot option" 
  sys.exit(0) 
 mcInp = argv[1] 
 plotOpt = argv[2] 
 DM = argv[3] 
 mmm = argv[4] 
 MMM = argv[5] 
 IJK = argv[6] 
 optPar = argv[7] 
 
 xm = mmm[0] 
 ym = mmm[1] 
 zm = mmm[2] 
 
 xM = MMM[0] 
 yM = MMM[1] 
 zM = MMM[2] 
 
 I = IJK[0] 
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 J = IJK[1] 
 K = IJK[2] 
  
 dx = (xM - xm) / I 
 dy = (yM - ym) / J 
 dz = (zM - zm) / K 
 
  # Plot the slice. 
 if plotOpt == "slice" : 
 
  # Figure out what slice we're supposed to plot. 
  pt = optPar 
  if pt < xm or pt > xM : 
   raise SystemExit("Error: bad option-specific plotting parameter") 
 
  # Open the appropriate .dat file  
  gFile = mcInp + "_slice_%*.*f.gdat" % (1, 3, pt)  
  mFile = mcInp + "_slice_%*.*f.dat" % (1, 3, pt) 
  try : 
   os.remove(gFile) 
  except OSError : 
   pass 
 
  try : 
   os.remove(mFile) 
  except OSError : 
   pass 
   
  gf = open(gFile, 'w') 
  mf = open(mFile, 'w') 
 
  # Pull out the data for the slice. 
 
  # Get the nearest index. 
  islice = round((pt - xm) / (xM - xm) * I, 0) 
 
  sp = "    " 
   
  # Iterate over the dose matrix to generate vector-form of the data file 
  for l in DM.keys() : 
   i = (l % (I*J)) % I 
        
   # If we're in the slice, grab the data. 
   if i == islice : 
    j = ((l - i) % (I*J)) / I + 1 
    k = (l - i - I * (j - 1)) / (I*J) + 1 
 
    y = ym + dy / 2 + dy * (j - 1) 
    z = zm + dz / 2 + dz * (k - 1) 
 
    yp = "%+*.*f" % (1, 3, y) 
    zp = "%+*.*f" % (1, 3, z) 
 
    d = DM[l] 
 
    # Write it. 
    gf.write(yp + sp + zp + sp + str(d) + "\n") 
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  gf.close() 
   
  # Loop over J and K values to generate matrix-form of the data file 
  for j in range(1, J+1) : 
   for k in range(1, K+1) : 
    l = islice + I * (j - 1) + I * J * (k - 1) 
    dp = "%e" % DM[l] 
    mf.write(dp + sp) 
   mf.write("\n") 
 
  mf.close() 
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