
1

Discrete-materials/discrete-facility 

nuclear fuel cycle systems analysis 

with GENIUS

Kyle Oliver
Computational 

Nuclear Engineering 

Research Group 

(CNERG) 

Paul Wilson
Advisor

UW-Madison 

Engineering Physics

Nov. 17, 2008



2

A highly discretized fuel cycle code poses new 

opportunities, challenges.

Scenarios: GENIUS data model allows 

rich, realistic scenario specification.

Capabilities: GENIUS currently supports 

once-through fuel cycles; closed cycles to 

follow shortly.

Infrastructure: GENIUS makes extensive use 

of existing computing tools and libraries, 

especially for optimization.

Region

Institution

Reactor

Reactor

Institution

Fuel Fab

Institution

Reprocessing

Repository

Fast Fuel 

Fab

Institution

Fast Reactor

+

- - -

+



3

Users specify nuclear facilities, the institutions that 

own them, and the regions they operate in.

Manager
Timer Bookkeeper

Region

Institution

Reactor

Reactor

Institution

Fuel Fab

Institution

Reprocessing

Repository

Fast Fuel Fab

Institution

Fast Reactor

Region

Institution

Reactor

Reactor

Rule

User-specified  rules might state whether 

one fuel cycle state can send materials to 

another, or define some special fuel-trade 

contract.

Institutions represent 

companies and government 

entities. To our knowledge, this 

modeling layer is unique among 

comparable fuel cycle codes.



4

Complete scenario input file includes facility 

deployment “initial condition” and future build plan.

Existing and planned 

facilities can be listed 

individually according to 

some nuclear facilities 

database

Generic future facilities 

get built according to a 

user-specified timetable



5

Currently, simulation manager uses simple greedy 

algorithm to match “once-through” commodities.

Manager
Timer Bookkeeper

Region

Institution

Reactor

Reactor

Institution

Fuel Fab

Institution

Reprocessing

Repository

Fast Fuel Fab

Institution

Fast Reactor

Region

Institution

Reactor

Reactor

Rule

For each commodity, the 

manager must know how 

to match suppliers to 

customers.

Requests and offers travel up to the manager at 

the beginning of each time step. After matching, 

instructions get sent back down to facilities.



6

GENIUS mass flows and power production can be 

benchmarked against other codes (e.g., VISION)

Uranium mass in spent fuel inventory

Single reactor case (no decay)

0

0.5

1

1.5

2

2.5

3

2000 2020 2040 2060 2080 2100
Year

M
a
s
s
 [
k
T

]

VISION

GENIUS

Curium mass in spent fuel inventory

Single reactor case (no decay)

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

2000 2020 2040 2060 2080 2100
Year

M
a
s
s
 [
k
T

]

VISION

GENIUS

Good agreement for U 

and most others in the 

absence of decay.

Some disagreement for 

Cm, others due to 

different isotope-

tracking conventions.



7

We can improve on existing greedy algorithm for 

commodity matching using network optimization…

-+

+ -
+

+ -

-

+

+

-

-

+

+

-

-

+

+

-

-

Linear network program

Nisxx

Ajicbxts

xa

i
Ajij Aijj

jiij

ijijij

Aji
ijij

,

),(],,[..

min

}),|({ }),|({

),(

jxij

i

Match suppliers and 

customers for each 

commodity by solving 

a standard network 

flow problem.



8

…but the networks get complicated under scenarios 

that include reprocessing.

-+

+ -
+

+ -

-

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

+

+

+

+



9

GENIUS will also be able to be called iteratively by 

optimizers to identify promising fuel cycle designs.

Execution of main 

GENIUS code measures 

effectiveness of proposed 

fuel cycle subject to some 

global objective function

(e.g., levelized cost of 

required electricity).

Iteration tool 

perturbs input 

scenario and re-

executes the 

code, iterating to 

convergence.



10

Open-source scientific computing tools improve 

code performance, development time, installation.

SQLite databases log facility and material 

histories and serve as input and output 

files.

Python and matplotlib provide functionality for 

custom pre- and post-processing modules.
+

Doxygen automatically generates C++ 

code documentation.

COIN-OR’s Clp linear 

program solver optimizes 

material routing.

DAKOTA’s iterators will be 

used (?) to optimize facility 

deployment.

GNU’s Autotools system 

streamlines platform-

specific installation.


