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ABSTRACT

Many factors have recently converged to renew interest in nuclear power in general and ad-
vanced nuclear fuel cycles in particular. Because of high technical and socio-economic uncer-
tainty about the nature of future global fuel cycles and the novel technology that will support
them, systems analysis and modeling activities have becomeimportant aids for fuel cycle plan-
ners and policy evaluators. A consensus seems to be emergingthat this work cannot precede
via methods that decouple the engineering details of the fuel cycle models from the broader
international and regional policies that have also historically shaped fuel cycle design deci-
sions. To enable a more integrated approach to fuel cycle systems analysis, the Simulation
Institute for Nuclear Energy Modeling and Analysis initiated work on a modeling tool called
GENIUS—Global Evaluation of Nuclear Infrastructure Utilization Scenarios. This thesis de-
scribes the design of and early methodologies deployed in GENIUS Version 2, a discrete-
facilities/discrete-materials nuclear fuel cycle simulation intended to eventually aid in technical
analysis and design of advanced fuel cycles as well as in nuclear supply chain robustness evalu-
ation, financial and economic modeling, and non-proliferation and waste management studies.
The system model of GENIUSv2 is designed to capture the details of interactions between
the various actors in a global hierarchy that includes reactors and other fuel cycle facilities,
the institutions that own them, and the regions those institutions serve. A simulation manager
facilitates the cooperation necessary for these actors to exchange material in support of reac-
tor operation. After describing the model design and simulation infrastructure of GENIUSv2,
this thesis presents optimization-based formulations fortwo of the formidable problems any
discrete-facilities/discrete-materials code must address: (1) how to route materials through the
system by matching individual customers for fuel cycle goods and services to appropriate sup-
pliers, and (2) how to properly combine available reprocessed material into recycled fuel with
a suitable composition. Finally, it discusses results froma suite of testing and demonstration
problems that highlight the code’s novel capabilities and summarizes important areas for future
development.
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Chapter 1

Introduction and context

Controversy over the role of nuclear power, and of advanced nuclear fuel cycles in particu-

lar, looms large in discussions of U.S. and global energy policy in light of several diverse but

interrelated developments. These factors include the continued increase in global electricity

demand1, emerging scientific consensus regarding anthropogenic contributions to global cli-

mate change (Allali et al., 2007), macroeconomic concern about fossil fuel prices and price

volatility (Sauter and Awerbuch, 2003), heightened fears about nuclear terrorism due to what

political scientist Graham Allison calls “the prism of 9/11” (2005), and the popular notion that

a “safe and just solution to the nuclear waste problem” (Darst and Dawson, 2008, p. 19) would

improve the chances of success of the so-called nuclear renaissance (see Nuttall, 2005).

This thesis describes the need for, the design of, and key results from a global nuclear

fuel cycle systems analysis tool intended to model, evaluate, and eventually optimize various

nuclear fuel cycles with respect to, in roughly ascending order of difficulty of the modeling

task,

1. their electrical generation capacity,

2. the total mass flows of materials between their various facilities,

3. the isotopic composition of those materials throughout the life of the system,

4. their robustness to perturbations and interruptions of atechnical or socio-economic na-

ture, and
1Especially in non-OECD (that is, developing) nations, whose projected 2030 generation outstrips OECD

nations’ by 46 percent (Doman et al., 2008).
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5. their total integrated cost.

This kind of simulation and analysis capability is especially important due to the capital-

intensive nature of nuclear facilities; uncertainty aboutthe details of their individual operation

and their cooperation as a fuel cycle system; and the interdependence of the regional, national,

and transnational entities engaged in the nuclear enterprise. However, before describing these

challenges and how nuclear fuel cycle systems analysis can be of help in investigating them,

we need to be clear about what we mean by advanced fuel cycles and why they’re important.

1.1 Advanced nuclear fuel cycles

Nuclear fuel cycles are the systems of facilities that prepare, use, store, and (in some cases)

recycle and/or permanently dispose of nuclear fuel and its byproducts. While no generalized

description of the nuclear fuel cycle will capture every stage used in every country to support

every reactor type, Figure 1.1 sketches a typical proposal for an advanced fuel cycle in which

uranium is first mined, enriched, fabricated into fuel, and “burned” in thermal-spectrum light

water reactors (LWRs) to produce electricity. The status quo in the United States slates spent

LWR fuel for geologic disposal without further irradiation,giving rise to the descriptoronce-

throughfor fuel cycles like the one we currently use. However, in thefigure we can see that the

used fuel from those reactors can instead be chemically reprocessed and fabricated into fuel

for special fast-spectrum reactors calledburneror transmutationreactors. In theory, this “fast

recycle” step can be repeated indefinitely to consume all thefissionable material the system

creates, which is why proposed fuel cycles that behave this way are sometimes calledclosed

fuel cycles2.

As an aside, it’s worth noting explicitly that there seems tobe no universal definition

of advancednuclear fuel cycles as such. We can generalize, though, fromimplicit descrip-

tions presented by a number of closely linked national and international bodies and projects,

including the Generation IV International Forum (GIF), theAdvanced Fuel Cycle Initiative

2For a complete discussion of the integrated nuclear fuel cycle and its component parts, see
Cochran and Tsoulfanidis (1990).
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Figure 1.1 Advanced nuclear fuel cycle proposed by the Global Nuclear Energy Partnership
program. Repeated actinide recycle in advanced burner reactors improves the per-
formance of the system from a resource extension and waste management perspec-
tive, since it recycles material that can produce power and would otherwise end up
in a geologic repository. Image from Fischer et al. (2008).

(AFCI), and (most recently) the Global Nuclear Energy Partnership (GNEP). Their materials

(GEN IV International Forum, 2009; Kelly and Savage, 2005; Lisowski, 2007) suggest that, if

such a definition did exist, it would include the reprocessing of used nuclear fuel for the pur-

poses of waste management and/or resource extension. Thus,in this document the modifier

advancedis used rather loosely to refer to future fuel cycles that incorporate some kind of

recycle.

Some analysts predict that nuclear power will assume a larger role in many nations’ elec-

tricity generation portfolios in the coming years, partly because of its status as a low-emissions

energy source. Indeed, peer-reviewed studies have shown that nuclear generation is among the

very best power-producing technologies on an emissions-per-kilowatt basis (Voorspools et al.,

2000) and remains competitive as an emissions mitigator when the cost of generation is con-

sidered as well (Sims et al., 2003). Predictions of an American nuclear renaissance show early

signs of coming to fruition; the Nuclear Regulatory Commission currently expects a total of 22

applications for new plant licenses representing 33 new units (Nuclear Regulatory Commission,
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2009). Nuclear power seems poised for a dramatic increase inrelevance to national and global

energy policy.

However, all this analysis and foreshadowed growth is basedon once-through fuel cycle

assumptions. The increased attention foradvancedfuel cycles in the more distant future is

due to their potential to greatly extend available uranium resources and to reduce the long-term

spent fuel storage burden by recycling the transuranic material created as the fuel is irradiated in

reactor cores. Regarding the former benefit, it’s interesting to note how resonant the economic

and political arguments for continued fast breeder reactordevelopment remain nearly 20 years

after the publication of William Jacobi’s prescient “Fast Breeder Reactors for Energy Security”

(1989); although LWR burnup values have increased in the intervening years, thermal reactors

will never utilize more than a couple percent of the uranium that passes through them. This

situation represents a clear opportunity for improvement,especially in light of renewed concern

over the availability of energy resources. As for waste management and storage, Wigeland and

colleagues’ important repository benefit study showed the potential to increase drift loading by

a factor of dozens to hundreds under the kinds of reprocessing and transmutation schemes that

might be possible in a fast burner reactor fuel cycle (2006).

1.2 The role of systems analysis

Needless to say, neither of these fast reactor technologies—nor the requisite reprocessing

capabilities necessary to make their fuel—has been commercialized. Indeed, the high cost of

nuclear facilities of any kind has long been an anathema to opponents of nuclear technology, a

criticism not easily dismissed in an economy that is at present constrained less by carbon than

by credit. It’s little surprise, then, that funding for advanced fuel cycles is difficult to come

by and that an underemphasis on “conservative economics” was one of the reasons cited by

a National Research Council committee for their recent unfavorable review of the AFCI and

GNEP programs (Board on Energy and Environmental Systems, 2008, p. 71). One way sys-

tems analysis activities can contribute to the R&D effort, then, is to provide careful estimates

about how much the various proposed fuel cycles will cost.
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Perhaps more interesting for the purposes of this thesis, though, were two of the commit-

tee’s other criticisms, both of which compellingly underscore the importance of nuclear fuel

cycle systems modeling and analysis for planning and policypurposes. First, there is great

uncertainty about what the mature state of individual GNEP technologies will look like. Fast

reactor fuel forms, in particular, were singled out as a major unknown that will likely continue

as such for “many years” (Board on Energy and Environmental Systems, 2008, p. 54). Clearly,

the successful development of all critical-path technologies is a concern for fuel cycle planners;

in the meanwhile, they must depend on flexible system study tools that can adapt to capture the

behavior of a variety of potential technologies and the range of dates over which those tech-

nologies are likely to become available. In other words, systems analysis tools are useful for

examining the consequences of the uncertainty regarding individual fuel cycle technologies.

Following from this first observation is a second and more significant point: uncertainties

about the final state of particular technologies have implications beyond the individual facilities

they comprise. Designing a fuel cyclesystemrequires understanding how the pieces work

together. In the face of so much uncertainty, systems analysis becomes important not just for

predicting and improving the performance of a fuel cycle butfor determining if it will work at

all. This is exactly the kind of situation the committee describes when it points out the need

to ensure that proposed U.S. recycling methods are compatible with the fuel cycles that other

GNEP partner nations are considering (Board on Energy and Environmental Systems, 2008, p.

53).

Finally, to expand our view beyond purely technical uncertainties, we note that most if

not all the discussions about advanced fuel cycles involve systems that incorporate significant

international cooperation. History and common sense suggest that such cooperation, especially

in the field of nuclear materials and technology, is subject to sudden and dramatic change—

possibly absent much concern for the technical repercussions. Systems analysis can and should

contribute by examining issues of regional interdependence. This kind of uncertainty about the

operation of fuel cycle systems is just as important to examine as the more technical concerns.

And as we will see in the next chapter, few if any existing tools do that job very well.
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We mention finally that we are not the only ones stressing the importance of systems analy-

sis activities in planning the future of nuclear fuel cycles. To close this introductory chapter, we

cite at some length the recent National Academy of Sciences/National Research Council report

“Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges,” which also

emphasizes the need for an increased emphasis on systems thinking:

The joint committees believe that a comparison to make choices among differ-
ent fuel cycle options (reactors, fuel types and sources, spent fuel management,
and processing) must use a systems approach. Such analyses would consider the
entire life cycle of proposed nuclear energy systems, integrating assessments of
fuel processing, fabrication, reactor design, and more. Only in this way can key
trade-offs be made among different parts of the system. It islikely that the best
technologies for processing spent fuel will be different depending on the specific
reactors in which the processed materials will be irradiated, and the fuel fabrication
approaches for them . . .

Good decisions among different proposed processing-fabrication-reactor systems
require clear, consistent, and well-thought-out criteria, based on justifiable system
objectives. Picking a particular numerical target for somesystem characteristic
(such as 99.99 percent purity for uranium separated from spent fuel) without care-
ful analysis of the overall system benefits and costs of meeting that goal leads to
poorly optimized systems . . . A good goal would be an integrated reactor fuel cycle
system that offers the best combination of economics, safety, security, proliferation
resistance, environmental impact, process operability, and sustainability, given the
situation that exists for a nation at a particular time.

. . . The role of designers and technical experts is to make clear the choices and
trade-offs that need to be made, outline the benefits and downsides of each of the
leading approaches, and do their best to ensure that the decisions ultimately made
are well informed and carefully considered. (Nuclear and Radiation Studies Board,
2008)

1.3 Thesis overview

Very broadly, the goal of the work I report on in this thesis was to design and implement a

nuclear fuel cycle systems analysis tool capable of providing this kind of insight. We can sub-

divide that overall objective into several subtasks, treatments of which comprise the majority

of this document:
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1. Identify key modeling capabilities and software features.Due to the time-intensive

nature of scientific software development and the relative immaturity of fuel cycle sys-

tems analysis as a cohesive discipline, careful needs-analysis work should precede any

major development effort. Thus, Chapter 2 discusses existing systems analysis tools and

their ability to probe questions raised by advanced global fuel cycle proposals. This chap-

ter also introduces the design principles of GENIUSv2, the discrete-facilities/discrete-

materials fuel cycle simulation tool we developed to begin to meet these needs.

2. Design and implement an appropriate fuel cycle model and theinfrastructure to

support it. Even with clearly articulated design principles and a list of desired mod-

eling capabilities in hand, the complexity and uncertaintyof future fuel cycles ensures

that designing an appropriately robust and flexible tool is anon-trivial research and de-

velopment task. Chapter 3 describes the design and implementation of GENIUSv2 in

considerable detail.

3. Develop mathematical formulations for the two key optimization problems posed by

the discrete-facilities/discrete-materials modeling paradigm. To fully support simu-

lation of both once-through and closed nuclear fuel cycles,a discrete tool like GENIUS

must include at least basic functionality for solving two key problems related to system-

wide material flow: a routing problem that determines how facilities will work together to

mutually satisfy each others’ supply of and demand for materials and an approximation

problem that determines how collections of separated material can be combined to pro-

duce recycled fuel with close to the desired composition. Chapter 4 discusses algorithms

for solving these problems using linear and network-flow programming formulations.

4. Test (and, when possible, benchmark) the code via simple andillustrative cases.Few

fuel cycle modeling problems have unambiguously correct answers, and the emergent

system-wide behavior of even seemingly straightforward scenarios can quickly become

complex and opaque. Chapter 5 discusses the results of a series of increasingly difficult

test problems and compares them to analogous results from other codes, as appropriate.
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Chapter 2

Literature review and motivation

This chapter will discuss some of the nuclear fuel cycle systems analysis tools that are

currently available, especially their capabilities and some significant gaps therein. It will also

introduce the code whose design and methodologies are the focus of this thesis: Global Evalu-

ation of Nuclear Infrastructure Utilization Scenarios, Version 2 (hereafter “GENIUSv2”). Note

that this chapter is not meant to definitively survey all of the available tools but, rather,

1. to review relevant portions of the thorough needs analysis work that has been performed

elsewhere;

2. to delineate persistent opportunities for GENIUSv2, especially with respect to model-

ing needs that are unavailable in Idaho National Laboratory’s VISION and GENIUSv1

codes; and

3. to introduce the approach and design principles of GENIUSv2.

2.1 Fuel cycle system code surveys

In 2006, Kemal Pasamehmetoglu of Idaho National Laboratory(INL) and Phillip Finck of

Argonne National Laboratory (ANL) reported on a collaborative research effort called the Sim-

ulation Institute for Nuclear Energy Modeling and Analysis(SINEMA). This project aimed to

“develop a simulation network that can model the global nuclear energy infrastructure, the as-

sociated fuel cycles and [their] components” (Pasamehmetoglu and Finck, 2006, p. 155). The

enterprise-level tool envisioned as both a standalone systems analysis code and an eventual
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interface to individual fuel cycle component models was named GENIUS. A prototype of this

tool (GENIUSv1) was developed at INL and Idaho State University by Chris Juchau and Mary

Lou Dunzik-Gougar (Juchau et al., 2006). The detailed needsanalysis and design specification

process for GENIUS was originally published by Juchau and Dunzik Gougar as “A Review

of Nuclear Fuel Cycle Systems Codes” (Juchau and Dunzik-Gougar, 2006)1 and was also in-

cluded in Juchau’s Master’s thesis about GENIUSv1 (Juchau,2008). Several points from this

review warrant preliminary discussion here.

2.1.1 Facility and material modeling

The proposed SINEMA modeling framework aims to paint a complete picture of the nu-

clear enterprise and thus to support detailed studies of material transportation, facility oper-

ation, fuel cycle system performance, non-proliferation risk, energy economics, etc. Conse-

quently, the GENIUS software specification calls for both facilities and materials to be modeled

as discrete entities whose histories can be tracked individually.

Juchau shows that few existing codes have this capability. Most of the others are what

he callscontinuous-flowcodes but I will callfleet-based, continuous-flowcodes for reasons

that will become clear in Chapter 3 (and will necessitate muchof Chapter 5’s math). These

codes2 tend to be built on top of commercial “stock-and-flow” systems dynamics packages like

Powersim Studio and Stella (Powersim Software, 2008; isee systems, 2008). They operate by

modeling the entire fleet of facilities in each stage of the nuclear fuel cycle as a single stock,

through which multiple continuously varying streams of material flow in and out at a rate ap-

propriate for the total throughput capacity of the fleet. This modeling decision allows for large

fleets of facilities to be modeled within the constraints of the underlying software platform, but

it disallows the kinds of discrete interactions required bythe SINEMA framework.

1A similar but more expansive revisiting of Juchau’s basic task is now ongoing at the University of Cincinnati
(see Miron, 2008) but was not completed in time to have its results discussed here.

2See, for example INL’s VISION (Jacobson et al., 2006, 2007) and ANL’s DANESS (Van Den Durpel et al.,
2003, 2007) codes.
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2.1.2 Regional modeling

Implicit in the GENIUS specification’s language about its role as aglobalcode is the notion

that it support modeling of distinct regions around the world. Throughout this document, the

term regionwill be used flexibly to refer to intranational, national, and transnational divisions

that can be characterized by a distinct time-varying demandfor nuclear energy and within

which some set of reactors operate in order to satisfy that demand. At minimum, such regional

modeling functionality must allow the code to store multiple demand curves (one for each

region) and identify distinct subsets of the world’s facilities with each region. However, a need

exists for regional modeling that is much more rich and complex than would be offered by

an accounting-based approach that merely maps demand and facility sets to particular regions

and that allows a region’s state and behavior to remain largely decoupled from those of other

regions.

Chapter 1 introduced the need for systems analysis tools thatcapture and explore the ways

in which regions will cooperate and compete with one anotherin the context of a global mar-

ketplace for fuel cycle materials. Perhaps the most obviousexample of this modeling need is

the desire to examine various proposals for fuel services arrangements between so-called “sup-

plier states” and “user states,” which are illustrated in Figure 2.1. It is unclear at present how

and (and perhaps even if) such interactions would work, and beginning to answer those ques-

tions seems to us to require a model that captures both the technical details of the reactors and

other fuel cycle facilities being operated by both statesand the economic and financial state of

the client region, the user region, and probably other stakeholders in the system as well.

We do not know of any region-enabled codes that do so; Juchau’s analysis suggests that

Brookhaven National Laboratory’s MARKAL code (Loulou et al.,2004) is well equipped to

handle the economics but that it models the nuclear fuel cycle in insufficient detail to capture

and verify the technical aspects of these interactions. Hisclaim that, with its model of other

sectors of the global power industry, MARKAL would be “a good companion” to more detailed

nuclear-specific codes resonates with ways in which that code has been used to study the role
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Figure 2.1 Inter-region fuel services interaction proposed by the Global Nuclear Energy Part-
nership. Investigating economic and diplomatic mechanisms to encourage and se-
cure such interactions is a chief motivator for regional modeling capabilities in nu-
clear fuel cycle systems analysis. Image from Lisowski (2007).

of nuclear power in the wider context of energy policy and economics3. In fact, one hopes this

comment will continue to serve as a reminder of where to limitthe scope of GENIUS, which

may already be an overly ambitious undertaking with respectto the level of detail the model is

expected to contain.

2.1.3 Optimization capabilities

From the beginning, GENIUS has been intended for systems analysis and optimization.

Juchau notes that no available tools optimize the fuel cyclewith respect to an integrated, global

objective function, though some do perform local optimization on particular parameters. Of

course, there are many difficulties associated with formulating nuclear fuel cycle system de-

sign (or even just operation) as a robust optimization problem; many of these challenges will

be discussed in Chapter 3. Relevant at this juncture, though, is the prevalence in these codes of

decision-making heuristics that artificially constrain the design decision space, possibly elim-

inating the global optimal solution. For instance, a heuristic for choosing an optimal tails

fraction at a uranium enrichment plant might not capture theeffects of a delay in the enriched

3See, for example, Nystrom and Wene (1999).
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material’s availability to fuel fabricators, resulting inreactor downtime and a much greater in-

crease in the cost of electricity than would have resulted from an enrichment procedure that

would have cost a little more but allowed the material to be available sooner.

Jain and Wilson (2006) discuss several of these heuristics (which arise quite naturally in

order to handle basic problems like reactor deployment and fuel allocation) and point out that

they are present in VISION and DANESS as well as the MIT code CAFCA (Boscher et al.,

2004). In fact, it seems impossible to build a functioning code that is completely devoid of de-

cision heuristics. Thus, we merely note at this juncture that their elimination wherever possible

(in favor of decision strategies that do respond to a global objective function) is very much an

outstanding research question for fuel cycle systems analysts, one to which we will return later

in this chapter and especially in Chapter 4.

2.1.4 Software design and infrastructure

The originators of SINEMA understood well the challenges posed by the proliferation of

nuclear fuel cycle systems codes and the more detailed codesthat model the behavior of the

individual facilities and materials that comprise fuel cycle systems. They believed that a uni-

fied modeling framework would help manage this phenomenon and coordinate collaboration

between developers and, as it were, between the codes themselves . Thus, they specified that,

in general, GENIUS should “[h]ave a software architecture that is modular, flexible, open and

accessible” and, more specifically, that

1. The tool must maintain abstraction between data and process algorithms. Both databases

and modules of process source code should be replaceable or updateable without major

alterations to the overall source code and system architecture.

2. The tool architecture, source code and documentation must be as open and accessible as

possible to project developers and collaborators, both foreign and domestic.

3. The tool must be able to communicate with other codes through weak-links/databases to

support the fuel cycle modeling effort. (Juchau and Dunzik-Gougar, 2006, p. 7)
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This is a very difficult specification to meet for codes that weren’t designed from the start to

meet it, and indeed Juchau and Dunzik Gougar concluded that none of the ones they investi-

gated satisfied the final item (2006, p. 8).

Nevertheless, it is this author’s opinion that the promise of a fuel cycle code that meets this

group of requirements alone would justify the resources that have thus far been devoted to GE-

NIUS development. One of the major themes of this thesis is that discrete-facilities/discrete-

materials (hereafter “DF/DM”) fuel cycle systems analysisposes difficult but rich and im-

portant problems in the areas of optimization, economic modeling, and data management, in

addition to more familiar physics and engineering problemslike approximations to in-core

isotopic inventory tracking. A tool that can encourage collaboration between the different

research groups interested in this problem—especially a tool that supports modular software

library substitution for the parts of the fuel cycle that contain tricky but self-contained sub-

problems—could be a boon to the field. That’s what the originators of SINEMA seemed to

believe, and the use of modern scientific computing tools mayjust make it possible. Again,

we’ll come back to this issue as we introduce GENIUSv2 later in this chapter and in Chapter

3. Let it suffice for now to say that (1) none of the existing tools were designed to support this

functionality and (2) we believe figuring out how to provide it represents its own relevant and

non-trivial research question.

2.2 Specific limitations of VISION and GENIUSv1

This section discusses two existing codes in extra detail. INL’s VISION code is proba-

bly the most important existing tool because of its power andmaturity, because developers

have consistently reported on its progress in the literature (see Jacobson et al., 2006, 2007;

Phillips et al., 2007; Yacout et al., 2006b), and because theDepartment of Energy has made

use of it for AFCI- and GNEP-related analysis and projections(see McCarthy, 2007). It also

serves as a typical example of fleet-based, continuous-flow systems analysis. The UW-Madison

Computational Nuclear Engineering Research Group (CNERG), of which I am a part, has con-

siderable experience using and extending VISION, so we are familiar with its strengths and
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limitations and can speak to a few of the areas in which its model is simply incompatible with

certain research questions4.

We do not claim that GENIUSv1 has attained anywhere near VISION’s level of sophisti-

cation and “market penetration,” nor would one expect it to have done so given its age and the

resources that have been committed to it. Nevertheless we discuss it here for several reasons.

First, it serves as a sort of “proof of principal” for doing DF/DM systems analysis on the kinds

of global nuclear fuel cycles proposed by the GNEP program. Second, the difficulties its devel-

opers faced have manifested themselves in GENIUSv2 development as well, so examining v1

in a little more detail stands to provide some insight into our own problems. Finally, because

GENIUSv1 was designed to fill the needs discussed in Section 2.1, it is important to identify if,

where, and why it fell short of that goal, so we can be confidentthat our work on GENIUSv2

is not redundant.

2.2.1 VISION: A fleet-based, continuous-flow code

We begin this section with a concrete example. Without goinginto too much detail about

the design and implementation of VISION within the PowersimStudio systems dynamics en-

vironment, or that of its Stella-based predecessor, DYMOND(Yacout et al., 2006b), we can

still achieve some understanding of their basic workings byexamining two isolated portions

of these models. The top of Figure 2.2 shows the so-called Reactor Park Sector in DYMOND,

which is somewhat simpler than its VISION replacement and therefore easier to visualize.

Right away, we get some sense for the fleet-based nature of the DYMOND-VISION model;

the labeled boxes along the main “conveyor belt” each represent a dynamically calculated

value characterizing the number of reactors in each of a number of subsets of the fleet (e.g.,

reactors that are under construction, reactors that are ready to operate, reactors that are nearing

retirement, etc.). The thin arrows show that the rates that determine how quickly reactors move

4Though it hopefully goes without saying, it bears explicit mention that this section is not meant as a criticism
of VISION. Indeed, many of its features that act as limitations within the framework of our discussion here are
strengths in other contexts. And of course it routinely solves many problems that will remain out of reach for
GENIUSv2 for some time yet.
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from one subset to another (Final Construction Rate, Reactor Aging Rate, etc.) are

controlled by user input parameters (e.g.,Licensing time) and possibly by feedback from

dynamically calculated measures of the system’s state. Onecan imagine how the values in this

sector can then subsequently serve to control the behavior of other sections of the model. For

instance, we would expect that the number ofFresh Reactors will help determine the rate

at which material moves in and out ofFuel in reactors. This latter value is part of the

DYMOND Fuel Cycle Sector, which again is somewhat simpler than its VISION replacement

and is therefore shown in the bottom of Figure 2.2 (Yacout et al., 2006a).

Figure 2.2 DYMOND screen shot showing (top) the code’s fleet-based reactor-tracking model
(the Reactor Park Sector), including reactor deployment decision heuristic, and (bot-
tom) the code’s model of material traveling through the fuelcycle itself (the Fuel
Cycle Sector). The VISION equivalents are similar but more complex. Images from
Yacout et al. (2006a).

Where does VISION fall short of being able to model advanced fuel cycle problems of

the type we’re interested in here? Obviously, the biggest gap lies in the lumping of fleets of

each type of facility together and tracking only the total aggregate mass flows of each isotope

through those lumped entities. Modeling individual facilities in the Powersim Studio frame-

work would quickly become untenable (because of the large number of facilities and linkages
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that would need to be manually specified for each study scenario), and modeling discrete mate-

rial shipments is difficult under the continuous-flow paradigm5. Another significant drawback

of VISION is the lack of a simple mechanism for performing thekind of regional modeling

discussed in Section 2.1.2. This is not to say that such modeling is impossible; one can imag-

ine any number of clever, probably iterative strategies forrunning individual problems for each

region and capturing first-order measures of the way the individual regions would need to inter-

act with one another. However, the model was clearly not designed for capturing the regional

heterogeneity of GNEP-type fuel cycles.

Regarding system optimization, note first that the very nature of tools like Powersim and

Stella makes especially difficult the would-be optimizer’srole of eliminating heuristics. In-

deed, these modeling systems are designed to study the effects of feedback and other heuristic

decision mechanisms on a dynamic system; in some sense, heuristics go with the territory. At

the very least, it seems fair to say that eliminating the general deployment heuristic shown in

Figure 2.2 would be a nuisance at this stage in VISION development. Using iterative optimiza-

tion toolkits to identify promising fuel cycles would requiring doing just that.

Interfacing with those optimization tools, or any other external software for that matter,

would also be a nuisance. Indeed, another significant limitation of VISION is the graphical-

user-interface-based, stand-alone, closed-source modeling environment. There’s very little in-

centive to develop tools that will workwith VISION because of the difficulties of linking other

software to Powersim Studio6. This forces developers to use systems-dynamics-based tech-

niques (or embedded Visual Basic scripts) for solving all of the difficult sub-problems the nu-

clear fuel cycle presents, even those for which robust and computationally affordable software

libraries currently or may someday exist.

We close this section by introducing just such a sub-problem, one of the more difficult ones

that fuel cycle analysts face. INL’s Steve Piet referred to this problem as the “Winery” issue,

5See, for example, the single-reactor benchmark problem discussed in Section 5.1.1.
6There are mechanisms for doing so, including the SimCouplermodule for linking Powersim models to the

Matlab/Simulink modeling framework (Powersim Inc., 2006). But note that this route creates additional depen-
dency on proprietary software.
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evoking an illustrative metaphor for the problem (present in all closed fuel cycle simulations)

of the “mismatch between the ever-changing composition of used fuel to be separated and the

as-fixed-as-possible composition of fuel to be fabricated from recycled [transuranics]” (Piet,

2007, p. 1)7.

I refer to this problem asrecipe approximationbecause I propose approximation-theory-

based formulations for solving it (see Section 4.4). FellowAFCI Fellow Shannon Yi has stud-

ied it as well, albeit in the VISION context, and others may beworking on it also. The point

is that this is a difficult research question that will likelynot be settled satisfactorily for some

time. In the meanwhile, platforms that make it easy to “plug and play” different forms of

the solution (which may require support libraries of their own depending on their level of so-

phistication) would seem to be ideally suited for testing and comparing promising approaches.

VISION’s software infrastructure makes it an unlikely candidate for filling this “test bed” role.

2.2.2 GENIUSv1: A discrete-facilities/discrete-materials code

GENIUSv1 filled several of the modeling gaps identified in Juchau and Dunzik Gougar’s

code review. However, due to limits on time and support, others remained to be addressed.

Among its most important successes, GENIUSv1 showed that meaningful mass flow data could

be calculated via DF/DM modeling of large, complex fuel cycle scenarios with regional het-

erogeneity. These scenarios, based on an initial conditionrepresenting the current state of the

global fuel cycle system and GNEP-type assumptions about future growth and regional inter-

action, were reported on in Juchau’s Master’s thesis (Juchau, 2008) and at the Global 2007

fuel cycle conference (Dunzik-Gougar et al., 2007). Figure2.3 plots some typical output from

7The metaphor goes like this:

1. Determine what grapes (used fuel) are available, with what characteristics.

2. Adjust your intended product specifications as needed.

3. If needed, blend different grapes or use a wine cellar to get a more consistent product. Blend grapes (used
fuel) from different sources; the properties of those grapes change with aging and source. Use a wine
cellar of different wines (separated material) laid down indifferent years.

4. Determine what you actually get. (Piet, 2007, p. 1)
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GENIUSv1: the flow of material to LWR fuel client states duringthe course of one such sim-

ulation.

Figure 2.3 Typical demand data from GENIUSv1 plotting the mass flow of LWR fuel to client
states (GNEP “user states”) under a GNEP-type growth scenario with realistic ini-
tial condition. Note that the “jaggedness” of the data is a natural result of DF/DM
modeling in which (a) the electricity demand curve does not consider fuel order-
ing cycles of existing reactors, (b) large, discrete batches of material always travel
together, and (c) the visualization procedures do not perform averaging or other
artificial smoothing. Image from Juchau (2008).

Note the high level of detail. As material moves from facility to facility, GENIUSv1 sums

and prints to the appropriate regional output file the annualmass flow for each stage in the

fuel cycle. Thus, collecting data of this nature is a straightforward though perhaps tedious

task under the data structures that are in place. However, careful examination of this plot still

yields some strategies about ways to move forward. There is,of course, a tension between

(on the one hand) the desire to collect as much detailed information as possible about the

history of the simulation and (on the other) the ability to efficiently store and process that

information. Although I have not performed detailed diagnostics on GENIUSv1, I suspect
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that some of its design decisions were made primarily in response to the limitations of this

prototype code’s software architecture. Relying on the combination of the (relatively) slow

and memory-hungry Python scripting language and a system oftext-file-based output probably

limited the “quantum-size” of GENIUSv1’s discrete materials. This limitation manifests itself

as one of the causes of the somewhat disconcerting jaggedness of the data in Figure 2.3. As we

shall see, GENIUSv2 implements a more robust and detailed system for tracking and storing

material histories, one that can handle the decision to track much smaller quanta of material,

if desired. Software infrastructure for material trackingis just one of several places where we

have gone to great lengths to improve and modernize the GENIUS code.

A second such area is in the potential for realism in the socio-economic interactions be-

tween (and, in the case of GENIUSv2, within) the regions of the GENIUS model. To our

understanding, the extent of the complexity in modeling these interaction in GENIUSv1 comes

in deterministically specifying the fuel cycle region fromwhich each fuel user region will re-

ceive its material. GENIUSv2 introduces another layer of abstraction in the hierarchy of fuel

cycle actors: the variousinstitutionsthat own the facilities in a given region. It also implements

a more flexible and dynamic scheme for modeling the interactions between various facilities,

institutions, and regions (see Section 3.1).

That scheme is also more optimization-friendly, which leads us to the third novel improve-

ment in GENIUSv2 with respect to its predecessor: the elimination of two major decision

heuristics. The first is the GENIUSv1 solution to what we willrefer to as thefuel cycle design

problem(FDP). GENIUSv1 still deploys fuel cycle facilities in a manner similar to VISION,

by hard-coding some reasonable set of feedback-based rulesdescribing the conditions under

which a new facility should be built. For instance, fast reactors are deployed in response to a set

of constraints that include regional electricity demand and the availability of recycled material

for fuel. GENIUSv2 eliminates the FDP heuristic by changingfrom a demand-driven facility

deployment to a user-driven one.

The second GENIUSv1 decision heuristic we’ve eliminated arises only under the DF/DM

approach. Unlike in the in the fleet-based, continuous-flow paradigm, in which a material flows
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through each stage of a single, unified pipeline (like DYMOND’s Fuel Cycle Sector from Fig-

ure 2.2.), the control logic in a DF/DM code must constantly ask the question “Which supplier

of commodityX should customerY get its fuel from?” We’ll call this thematerials rout-

ing problem(MRP). Juchau solves it via a combination of the user-specified, region-to-region

pairings discussed earlier or, when no pairing exists, a simple heuristic that matches each cus-

tomer to the supplier that currently has the most unused capacity. This heuristic is perfectly

reasonable, but it precludes an optimization-based approach that can capture the consequences

of market competition and other socio-economic forces. We replace it with an optimization

problem known as anetwork flow programthat solves the MRP with regard to a global objec-

tive function: the total cost of the chosen routing (see Section 4.2).

2.3 GENIUSv2 design principles

We can generalize this chapter’s findings into a set of four design principles that have

guided my work on GENIUSv2. These principles are drawn from the needs analysis work

summarized in this chapter, but they also reflect my understanding of the most important and

challenging among those needs, especially the ones GENIUSv1 does not meet. These prin-

ciples are general enough to loosely summarize the overarching themes of the very detailed

GENIUS specification (see Juchau and Dunzik-Gougar, 2006) but have proved to be a bit more

supple than that document in guiding day-to-day design and implementation decisions. I re-

cently mentioned these four principles in a conference paper currently in press, calling for

system study tools that are simultaneouslydetailed, flexible, robust, andgenerative:

By detailed, we mean that [the study tools] model a wide range of information
about the nuclear fuel cycle scenarios being considered. Detailed study tools must
model very specific facility deployments and facility operation modes. Byflexible,
we mean that they adapt well to new approaches for how those facilities should
work together. Flexible tools are as free as possible from assumptions about what
an advanced fuel cycle flowsheet will look like and are easy tomodify or augment
to model new approaches. Byrobust, we mean that they store and process the
necessarily large data sets efficiently. Robust tools shoulduse modern computing
libraries and other resources. Bygenerative, we mean that they can identify new,
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promising, or optimal fuel cycle scenarios. A generative system analysis tool is in
a sense also a system design tool. (Oliver et al., 2009)

2.4 Summary

This chapter introduced the GENIUS project and surveyed thework that helped determine

its purpose and scope. We noted gaps in the modeling and optimization capabilities of ex-

isting fuel cycle codes, especially with respect to the almost certainly international nature of

future advanced fuel cycles (including those proposed by the GNEP program) and the difficult

problem of limiting dependence on decision heuristics. Particular attention was paid to INL’s

popular VISION code, which is not compatible with the discrete-facilities/discrete-materials

modeling paradigm called for by the SINEMA program, and to GENIUSv1, which served as

a useful prototype but needs substantial revision in order to be compatible with the overarch-

ing goals of the project. These claims and observations werethen generalized into a set of

design principles for GENIUSv2. The next chapter will show how those principles manifested

themselves into an actual code.
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Chapter 3

Modeling and design

This chapter describes the design of GENIUSv2, with particular emphasis on its model

of the nuclear fuel cycle. Neither this chapter nor the thesis as a whole is intended as code

documentation or as a user guide or other systematic summaryof GENIUSv2. I will focus

on how the code provides (or is designed to be extended to provide) many of the novel mod-

eling and analysis capabilities identified in Chapter 2. Although optimization considerations

affected many of the design decisions explained in this chapter, formulations for the various

optimization problems this model gives rise to are found in Chapter 4.

Section 3.1 will introduce the nuclear fuel cycle system model itself. This discussion will

include descriptions of the classes that define the behaviorof its discrete facilities and discrete

materials, in addition to the other entities the model accounts for. Section 3.2 will describe

the simulation machinery, that is, the aspects of the code that allow the entities in the model

to work together to produce the kinds of system behavior we want to study. This machinery

includes atimer that moves the simulation forward, abookkeeperthat helps record the history

of the simulation, and amanagerthat oversees and directs cooperation between the entitiesin

the model. Finally, Section 3.3 describes the infrastructure of the code, including the use of

modern computing tools for managing the large amount of dataa DF/DM code requires and

produces.
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3.1 System model

The global nuclear fuel cycle model implemented in GENIUSv2was first described at the

2007 GNEP Annual Meeting (Wilson and Oliver, 2007) and has changed very little in the in-

tervening time. The model’s hierarchical structure is illustrated in Figure 3.1 via a simple

two-region example. Each scenario modeled will include at least one instance of three types

of discrete entities:regionssubject to some demand for nuclear power,facilities that attempt

to provide that power or to otherwise support the fuel cycle globally or regionally, and the

institutionsthat own those facilities. So in Figure 3.1, the region on theright might repre-

sent a large fuel cycle state in which many different institutions sell electricity or nuclear fuel

cycle materials or services. The left-hand region might represent a client state with a single

government-owned utility that operates reactors fueled with material purchased or leased from

the fuel cycle state.

Figure 3.1 The hierarchical structure of the GENIUSv2 model. Note the addition of a new
“layer” of discrete entities: the institutions that own andoperate nuclear fuel cycle
facilities. Image adapted from Wilson and Oliver (2007).

The terminology for naming these entities has been chosen with care and reflects our desire

that the model be as flexible as possible. In typical use, suchas for the kinds of problems Juchau

ran with GENIUSv1, a region will represent a particular country. However, one can imagine
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cases in which a number of countries in a transnational region might have energy infrastructures

that are sufficiently coupled to warrant modeling them as a single discrete entity1.

Similarly, we useinstitutionas a general term to encompass utilities and other public, pri-

vate, or governmental companies or organizations that participate in the nuclear fuel cycle.

Note that many (if not most) of these institutions own more than one facility. As I mentioned

in Section 2.2.2, institutional modeling is new to the GENIUS project and—at least to our

knowledge—to the entire collection of codes that perform detailed nuclear fuel cycle modeling

and systems analysis. We believe this intermediate layer will be necessary (or at least highly

useful and appealingly realistic) for the kind of coupled technical and economic analysis that

will be needed to investigate global fuel cycle proposals inthe manner suggested by the Na-

tional Academies (see Nuclear and Radiation Studies Board, 2008).

Finally, note that the termfacilities emphasizes that, although reactors, fuel fabrication

plants, enrichment plants, etc. all have specialized data and behaviors, nuclear fuel cycle fa-

cilities look very much alike, conceptually. Except for those at the extreme ends of the fuel

cycle (uranium mines and waste repositories), each must obtain a particular fuel cycle mate-

rial (e.g., fresh fuel or unenriched uranium hexafluoride),perform some operation on it (e.g.,

irradiation or enrichment), and pass along new materials (e.g., spent fuel or enriched uranium

hexafluoride) to another interested facility.

This functional similarity, and others like it, motivated our extensive use ofinheritance2

throughout the region-institution-facility (hereafter “R-I-F”) hierarchy, as well as in the mate-

rial model discussed in Section 3.1.3 below. In GENIUSv2, the discrete facilities that so far

we’ve only discussed theoretically are in fact implementedas instances of several specialized

subclasses of a more general facility class. Similarly, thediscrete materials are instances of the

material class and its subclasses. These two class hierarchies take literal advantage of inheri-

tance to share common data and behaviors. However, the general idea of inheritance operates

in the three levels of the GENIUSv2 R-I-F hierarchy as well. For instance, the economically

1Or, conversely, an intra-national region might operate independently enough to justify distinct treatment.
2See Appendix A for a brief description of this and other important terms from object-oriented programming.
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viable operation of a facility depends upon a number of financial parameters, including mate-

rial costs, tax rates, debt costs, etc. The values of some of these parameters (insurance costs,

say) might be a function of the facility itself, but others (such as the internal rate of return) are

a function of who owns the facility, and others still (such asthe tax rate) depend mostly on

where the facility is located. Individual facilities can then “inherit” (in a non-technical sense)

the appropriate values based on their membership in a particular region and institution.

3.1.1 The region and institution classes

At this point in the development of GENIUSv2, the main jobs ofthe region and institution

classes are storage and message-passing. The latter will bediscussed in Section 3.2.3 for all of

the classes that have the ability to communicate. As for storage, the region class must provide

each region object with data structures for storing the electricity demand of the region and the

collection of institutions that operate within its borders, so to speak. Because we decouple elec-

tricity demand from facility deployment for optimization purposes and do not currently include

the regional electricity demand in the objective function for determining materials routing, the

storage of regional demand data is not, strictly speaking, necessary at present. However, as the

code’s objective function formulations continue to mature, it will be important to have access

to regional electricity demand at run time. The institutionclass has similar storage needs, with

each institution keeping track of the facilities it operates and its static plan for building new

ones in the future. As I mentioned above, the region and institution classes will also store rele-

vant economic and financial parameters for their members to inherit as the GENIUSv2 model

becomes more sophisticated.

Finally, though regions and institutions need not be implemented as classes in order to sup-

port this particular functionality, we note also that the R-I-F hierarchy naturally establishes

set-theoretical relationships between simulation entities; for instance, a facility is a member

of (1) its own set, (2) the set of facilities owned by the institution it belongs to, and (3)

the set of facilities residing in a given region. Thus, the region and institution classes (and

also the facility class described below) implement set-theoretical operators (isSubsetOf(),
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isSupersetOf(), etc.) to allow for simple and efficient calculation of theserelationships

when exploring the possibility of trade between the varioussimulation entities.

3.1.2 The facility class

The facility class and its various subclasses are more complicated than regions and institu-

tions because there is much more that a facility needs to knowand be able to do, so to speak.

However, as I mentioned above, it’s possible to simplify andappropriately encapsulate some

of this complexity by including common data and behaviors inan abstract facility class and

specialized behaviors in the appropriate subclasses. We first discuss the common facility class.

The following prose descriptions are summarized and augmented in a tabular listing (Table

3.1) at the end of this section3.

3.1.2.1 Facility data

The simplest aspect of the facility class to understand is the set of data that describes a

facility’s history and operation. For instance, all facilities have some characteristic construction

time, some time at which they begin operating, some periodiccycle time that describes the

length of their basic unit operation, and some time at which they’re decommissioned. These

and other data that apply to all facilities (though their values may vary from subclass to subclass

and even from object to object instantiated from those subclasses) comprise the member data

of the facility class. Other important types of facility data include capacities, capacity factors,

and financial parameters.

3This table and others like it are not meant to provide an exhaustive listing of every member in the facility
class definition, and neither will the entire source code forGENIUSv2 be given in an appendix. (At present
time, the GENIUSv2 source code comprises more than 17,000 lines, not counting the Python pre- and post-
processors.) However, it is our intention that GENIUSv2 be available as open-source software, though we have
not yet settled on a distribution method. See the Computational Nuclear Engineering Research Group home page,
http://cnerg.engr.wisc.edu, for current information.

http://cnerg.engr.wisc.edu
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3.1.2.2 Material storage

We need not understand much about the GENIUSv2 material classes to understand that

facilities will need assorted data structures for keeping track of all the discrete material objects

they will pass between one another. These data structures can be divided into two types that

we’ll call storage buffersandprocess lines. The latter are the easier to understand; they repre-

sent the materials currently being operated on by the facility. For instance, materials stored in

the operating line at an enrichment plant can be thought of asbeing “in the cascade” of what-

ever sequential enrichment technology is employed at that particular facility. If we recall the

observation that a facility is a black box into which raw materials flow and out of which refined

products emerge, the process lines are the data structures that hold the relevant materials during

their time in the box.

Figure 3.2 An illustration of the two types of material-storage data structures in the GENIUSv2
facility classes. An upstream buffer called the stocks can store materials that have
arrived at a facility but are not yet ready for processing. Once a material has been
processed (during which time it is stored in the process lines), it can be sent to a
downstream buffer called the inventory.

On the other hand, a storage buffer can be thought of as a collection of either raw materials

or processed materials that arewaiting, respectively, to be processed at this facility or to be sent

along to the next one. In other words, buffers are the collections of material piled up on either

end of the black box (see Figure 3.2). Under a “just in time” model, these buffers would not

be necessary; however, they allow us to simulate the risk aversion (and sometimes decay heat

reduction) strategies practiced by real-world nuclear fuel cycle facilities—facilities that, after
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all, comprise an expensive and sometimes very time-sensitive supply chain. Including buffers

in the facility design will allow GENIUSv2 developers and users to investigate strategies for

ensuring system robustness through wise maintenance of andreliance on material buffers. We

hope that, once these procedures are better understood, they can be parameterized and included

in policy optimization studies.

3.1.2.3 Operational methods

Just as all facilities share common data, so too do they sharecommon methods4 for going

about their business as facilities. These methods include procedures for beginning a cycle, sub-

mitting offers and requests for material, sending materialto other facilities, receiving material

from other facilities, etc. Developers can decide whether afacility subclass should use the gen-

eral facility method for performing an action (for instance, the general methods for sending and

receiving material are likely sufficient for most subclasses) or to override the generic facility

behavior (methods forordering material likely depend on the specialized role of the facility

subclass, since that role determines the type and amount of material to be ordered).

4See Appendix A.
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Table 3.1 Selections from the facility class definition. Function arguments and some members
omitted for space or complexity reasons.

Member data
Declaration Description
int ID The unique identifier for this facility.
FacType myType The type enumeration for this facility (i.e., MM for mine/mill,

FF for fuel fab, etc.).
int constrTime The time it takes to construct this facility, in months.
int lifeTime The lifetime for which this facility can operate, in months.
int processTime The time, in months, that it takes for this facility to complete a

process cycle.
double capacity The monthly capacity of this facility (units vary).
double capFactor The capacity factor for this facility during this time step.
int startContr The simulation time at which this facility started being built.
int startOp The simulation time at which this facility started operating.
int startCurrProc The simulation time at which this facility started this cycle.
deque<Material*> The buffer of materials present at this facility and waitingto be
stocks operated upon.
deque<Material*> The buffer of materials present at this facility and waitingto be
inventory sent elsewhere.
ProcessLine A complex data structure that stores the materials this facility is
ordersExecuting operating on, along with information about the process.

Member functions
Declaration Description
void beginCycle() Begins this facility’s next operational cycle, offering and

requesting new material, as appropriate.
void Sends material to a given facility, according to some set of
sendMaterial() instructions.
void Receives the given material, placing it on the stocks or usingit
receiveMaterial() immediately, as appropriate.
void decommission() Decommissions this facility.
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3.1.3 The material classes

Before we discuss the facility subclasses, which perform specialized operations on mate-

rials, we need to introduce the classes from which those material objects are instantiated. Per

the various GENIUS requirement review documents, we need material objects to store enough

information so that after execution we can reconstruct two important data sets: the isotopic

history and the facility history of every material object inthe simulation. Because there can

easily be hundreds of thousands or even millions of materialobjects instantiated during large

simulations5, it is important that they store this information efficiently. One obvious answer to

this challenge is to only record composition or location data when this informationchanges.

We can further improve the data storage outlook by storing material compositions sparsely—as

a map of isotope codes to the corresponding mass or number of atoms, instead of as a vector

where each vector index corresponds to one isotope in a predetermined list to be tracked. The

vector-based approach would be slightly faster and easier to work with, but it detracts from the

code’s flexibility by committing to a hard-coded isotope list, and it unnecessarily stores large

numbers of zero entries (many simulation objects contain only a handful of isotopes).

An interesting tension emerges from the above design schemein the case of materials con-

taining non-stable isotopes. From a macroscopic point of view, such materials’ compositions

change continuously, which would seem to necessitate month-by-month radioactive decay cal-

culations. While such an approach is expensive but not prohibitive in continuous-flow codes,

it’s both in the case where we must perform the calculations not on dozens of stocks and flows

but on the hundreds of thousands of discrete objects that have emerged from reactor cores and

thus contain dozens of radioactive constituents. To resolve this tension, we observe that we

actually care about the composition of a given radioactive material at only a few points along

the back end of the fuel cycle6. Thus, we adopt adecay-on-demandstrategy. The material

class implements a method that first calculates the number ofmonths since it last recorded its
5For example, in a simulation where 1,000 pressurized water reactors operate simultaneously, there will be

almost 200,000 GENIUS material objects stored in memory to represent just the fuel assemblies currently residing
in those reactors.

6For instance, before shipping an object representing used fuel from on-site storage to a reprocessing plant
or off-site storage facility, a reactor may wish to calculate that fuel’s instantaneous decay heat. Similarly, a
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composition and then performs the calculation to simulate decay over that number of months.

Although this approach still results in “dense” composition histories for materials residing in

“decay-sensitive” parts of the fuel cycle, it neverthelessoffers significant performance gains

and allows the model to capture the important effects of decay7. See the GENIUS source

code and documentation for specifics about the actual numerical method used to perform de-

cay calculations, which was implemented and tested by UW-Madison Computational Nuclear

Engineering Research Group (CNERG) member Kerry Dunn.

The other important piece of information stored by materialobjects is theircommodity

type. We appeal here not to the rigorous economics definitionof commodity but to something

closer to the operations research usage, which refers to network programs (see 4.2) as being

eithersingle-or multi-commodity problems depending on whether flows on the network are

of a single homogeneous material or multiple material types. The commodity enumeration

within GENIUSv2 is used throughout the code; most importantly, it’s the mechanism by which

facilities specify the kinds of materials they wish to request from or offer to one another. The

features of the material class discussed so far are summarized in Table 3.2.

The material class hierarchy currently includes a single specialized subclass whose purpose

is to represent fuelassemblies. Assemblies are stored and passed between facilities in special

custom containers calledbatches, which of course correspond to the fuel batches that reactors

order to replace a subset of the assemblies within the core during each refueling cycle (see

Cochran and Tsoulfanidis, 1990). We track individual fuel assemblies within GENIUSv2 in

accordance with our desire to model the fuel cycle in as much detail as possible, but we ac-

knowledge that writing out the histories of each individualassembly (as opposed to the more

typical practice of writing out batch-wise histories) increases the size of the output dataset

fabricator of recycled fuel will wish to know the exact composition of the material from which it constructs new
fuel assemblies.

7Juchau reported in his thesis that neither GENIUSv1 nor CAFCA perform explicit radioactive decay cal-
culations. Alone among discrete-materials codes supporting this capability at the time were the French Atomic
Energy Commission’s COSI and Eric Schneider’s Comprehensive Physical and Economic Model of the Nuclear
Fuel Cycle (Juchau, 2008).
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Table 3.2 Selections from the material class definition. Function arguments and some members
omitted for space or complexity reasons.

Member data
Declaration Description
long ID The unique identifier for this material.
Commodity myType An enumeration representing the commodity type of this material

(yellowcake, enriched uranium hexafluoride, etc.).
CompHistory A complex data structure representing the complete isotopic
compHist history of this material. Implemented as a map that pairs the

times at which the composition changed with the new
composition at those times.

FacHistory A complex data structure representing the complete facility
facHist history of this material. Implemented as a map that pairs the

times at which the location changed with a record of the
source and destination facility identifiers.

Member functions
Declaration Description
void changeComp() Changes this material’s current composition as specified in the

function arguments.
void logTrans() Logs a transfer of this material between two facilities.
void absorb() Absorbs the given material object into this one. Effectively

an addition operator for materials.
void extract() Extracts the contents of the given material object from thisone.

Effectively a subtraction operator for materials.
void decay() Decays this material’s composition for the number of months

since its last composition change.

by two to three orders of magnitude, with performance slowdowns to match. Collecting as-

semblies into batches, which store aggregate data representing the sum of their constituent

assemblies’ composition histories and a single copy of their collective location history, allows

GENIUS to support the user’s choice of either batch-wise or assembly-wise output reporting.

As one might therefore expect, the assembly class (see Table3.3) includes only one additional

assembly-specific member, and the batch class (see Table 3.3) looks very much like the mate-

rial class, with the exception of a few specialized functions and data structures for storing and

managing the assemblies themselves.
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Table 3.3 Selections from the assembly class definition. Function arguments and some mem-
bers omitted for space or complexity reasons.

Member data
Declaration Description
[Inherited data] See superclass (material) data, Table 3.2.
stack<pair<int, int> > A stack that stores pairs comprising a batch number and the
batchTracking time when this assembly joined it.

Member functions
Declaration Description
[Inherited functions] See superclass (material) functions, Table 3.2.

Table 3.4 Selections from the batch class definition. Function argumentsand some members
omitted for space or complexity reasons.

Member data
Declaration Description
long ID The unique identifier for this batch.
CompHistory Like the material class’s compHist, but summed over all the
compHist assemblies in this batch.
FacHistory Like material class’s facHist, but for the batch as a whole.
facHist

int numAssems The number of assemblies in this batch.
FuelArray myFuel A complex data structure that stores the assemblies in this batch

as they might be arranged in a reactor core.
Member functions

Declaration Description
void changeComp() Changes this batch’s current composition as specified in the

function arguments.
void logTrans() Logs a transfer of this batch between two facilities.
void transmute() Changes the composition of this batch and its assemblies in order

to simulate irradiation in a reactor core.

3.1.4 The facility subclasses

The specialized behavior of most facility subclasses is fairly intuitive given an overall un-

derstanding of fuel cycle operation (see Figure 1.1). For instance, most facilities have a spe-

cialized method for performing their particular processing step on a material object of the ap-

propriate type (mines have amine() method, conversion facilities have aconvert() method,

and so on). In those cases where a specialized datum or set of data is necessary to support
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subclass-specific operation, these are also data members ofthe subclass. For instance, enrich-

ment plants include a data member representing the U-235 enrichment of their waste stream8,

which at present is assigned by the user but could also be set dynamically via feedback or an

optimization routine, as appropriate. More complete information about the GENIUSv2 facility

subclasses is available in the online code documentation (Oliver et al., 2008), but the following

sections discuss the three most challenging and atypical subclasses: the reactor, separations,

and repository classes.

Note briefly that the bulk of the methodological work performed for this thesis is directed

toward getting these facilities to work together, not toward maximizing the performance or re-

alism of how any one particular type is modeled. Many of the assumptions and simplifications

that are generally deemed necessarily in fuel cycle systemscodes are present here as well. This

section aims only to explain the important detailscurrently implemented, in order to provide

the reader with enough background to place the results of Chapter 5 in their proper perspective.

The means by which inter-facility cooperation is implemented is meant to be reasonably robust

to changes in the internal behavior of each facility type. Thus, the shortcomings documented

in this section can be addressed as necessary without, we believe, major code-wide disruption

in the future.

3.1.4.1 The reactor class

The reactor class is more complex than most facilities due tothe nature of (1) the materials

that reactors operate on and (2) the burnup operation itself. Whereas most fuel cycle facilities

change the composition of single material objects according to explicit closed-form results,

reactors operate on batches of materials that emerge from reactor cores with transmuted iso-

topic compositions that are difficult to predict. Handling Problem 1 is simple enough; Table

3.5 shows that the reactor class includes a specialized process line (currCore) and buffers

(batchStocks and batchInventory) that store batches of material rather than individual

quanta. A thorough treatment of Problem 2, on the other hand,would require a thesis in

8The so-calledtails fraction(see Benedict and Pigford, 1981).
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and of itself9. Thus, the discussion here is limited to defining the problem, describing how GE-

NIUSv2 implements the standard highly simplified solution,and referencing some promising

new work that could be incorporated into GENIUSv2 in the future.

Table 3.5 Selections from the reactor class definition. Function arguments and some members
omitted for space or complexity reasons.

Member data
Declaration Description
[Inherited data] See superclass (facility) data, Table 3.1.
queue<Batch*> A buffer of batches present at this reactor and waiting to be put
batchStocks into the reactor core.
deque<Batch*> A buffer of batches present at this reactor and waiting to be sent
batchInventory to separations or long-term storage.
queue<Batch*> The “process lines” for a reactor, namely, the core itself.
currCore

Member functions
Declaration Description
[Inherited functions] See superclass (facility) functions, Table 3.1.
void decommission() Decommissions this reactor. Overrides the facility version of

this function in order to empty reactors’ extra buffers.

From our modular perspective of fuel cycle facilities as black boxes that operate on material

objects (see Figure 3.2), our task is always to define a procedure, T , subject to reasonable

constraints imposed by the relevant chemistry or physics, to transform a set ofM feed material

composition vectors,{Cm
in}, into N output composition vectors,{Cn

out}, via some amount of

work, Z:

TZ({C1
in, . . . , C

M
in }) ⇒ {C1

out, . . . , C
N
out} (3.1)

Our hope is always that we can model this transformation via closed-form equations of some

small number of variables and parameters and thatZ can help us measure the time the process

takes.

Let’s illustrate this procedure with a simple concrete example. In the case of enrichment

plants, we are fortunate that a simple mass-balance derivation provides just the kind of equation

9Indeed, half of Yi’s master’s thesis is devoted to formulations for transmutation modeling suitable for fuel
cycle systems analysis codes (2008).
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we need, at least in the case where we can neglect all isotopesother than U-235 and U-23810.

If an enrichment plant is asked to produce a material object containingP tons of uranium

enriched to a U-235 mass fraction ofxp from a suitable feed material object of massF and

U-235 mass fractionxF , and if the user or an optimization routine assigns our plantto operate

with a tails fraction (waste stream enrichment)xw, then theCin andCout vectors are completely

determined byP , F , thex’s, and the waste object mass,W = F −P . Plus, the required facility

throughput can be calculated, in ton-SWU, as follows:

Z = P [(2xp − 1)log(
xp

1 − xp

)

+ (2xw − 1)log(
xw

1 − xw

)
xp − xf

xf − xw

+ (2xf − 1)log(
xf

1 − xf

)
xp − xf

xf − xw

]

(3.2)

If this job were the only one being processed at a given time, we could then say that it would

require Z
Zmonth

months to complete, wherezmonth is the monthly capacity of the plant.

Unfortunately, far from being completely determined by just a few terms in a set of simple,

closed-form equations, the output isotopic vectors for thematerials that emerge from irradia-

tion in a nuclear reactor vary widely and require expensive computation via dedicated codes

many times more advanced than GENIUS. They depend differentially on the power level of the

reactor, the neutron’s energy spectrum during operation, and many core-specific design param-

eters, some of which change significantly over the life of thecore. Because systems analysis

codes are expected to model hundreds if not thousands of reactors over the course of the dozens

of core refueling cycles that occur during each one’s lifetime, direct coupling to core physics

simulation codes is not computationally feasible—nor do wereally desire this level of detail in

a model of the system as a whole.

10A sensible assumption when dealing with non-recycled uranium. For recycled uranium, de la Garza’s
matched R cascademodel (1977) and Benedict and Pigford’s subsequent extension (1981) are suitable. Un-
fortunately, they are a bit harder to implement, since they lack a closed-form solution and must be computed
numerically.
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The standard short-term solution in other codes has been termed therecipe-based approach.

Developers choose several representative reactor types and perform full core-physics calcula-

tions in each type for a number of typical fresh fuel composition vectors, termedinput recipes,

representing the core as a whole. Each input recipe is pairedwith a correspondingoutput recipe

extracted from the solution of the complete fuel irradiation and transmutation problem. Thus,

reactors simulated in the code must choose from among the available input recipes and must as-

sume reactor operation in accordance with the assumptions that determined the corresponding

output recipes.

The matter of somehow calculating the reactor’s work (i.e.,the power it produces) presents

an additional complication. The appropriate measure is fuel burnup, the quantity of energy

produced per fuel mass, expressed in the units gigawatt-days per metric ton of heavy metal

GWd
tHM

. However, this quantity also depends complexly on the minute details of reactor operation

and cannot be expressed as a simple linear function of core residence time. Thus, we include

multiple input-output recipe pairs, each representing a given fresh fuel composition irradiated

to a given burnup. This scheme is illustrated in Figure 3.3 using the notation from Equation 3.1.

Such a scheme removes several important degrees of freedom and requires careful accounting

to produce strictly correct answers for power production. For now, GENIUSv2 relies on a small

set of hard-coded recipes chosen for benchmarking purposes(see Chapter 5) and in one case

provided by a client. Let it suffice to say that, though these data members were omitted from

Table 3.4 for clarity, the batch class stores a recipe identifier so that itstransmute() method

can produce the correct output isotopics when batches are removed from reactor cores. The

user assigns an appropriate choice of input and output recipe for the fresh fuel each reactor

will order and the used fuel it will produce. This assignmentimplies ade factoburnup, which,

depending on the user’s care, may or may not be consistent with the user-assigned reactor cycle

times and power capacity. Eliminating this potential inconsistency should be a top priority as

GENIUS development moves forward.

Promising research has been proceeding elsewhere to more satisfyingly solve the reactor

transmutation problem. Yi recently (2008) extended work byHermann and Westfall (1998) to
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Figure 3.3 Schematic of the standard recipe-based transmutation that materials undergo in re-
actors, as currently implemented in GENIUSv2. Each input composition is mapped
to an output composition by assuming some characteristic burnup when assigning
an in-out recipe pair to a reactor.

develop an algorithm suitable for fuel cycle systems analysis codes, and Scopatz and Schneider

(2009) have an article in press describing a different method. One or both of these approaches

may prove feasible for future adaptation for or direct application in GENIUSv2.

3.1.4.2 The separations class

While not as complex as reactor transmutation, the chemical reprocessing operations pre-

sent in fuel cycles that employ used fuel recycling pose another non-trivial modeling task. We

handle it in the GENIUSv2 separations class, instantiations of which take in used fuel from

reactors and produce material objects that represent either useful feed materials for fabricators

of recycled fuel or waste materials destined for storage or disposal.

There is, of course, a large and growing literature on how various reprocessing schemes

currently work and will work in the future. However, for systems modeling purposes we again

appeal to a “black-box” outlook in which we care mostly aboutthe composition vectors of
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the output materials that emerge from the box. Thus, we implement the common notion of a

matrix-based separation transformation that places some given fraction of each element from

the input stream into each of some set number of output streams, as shown in Figure 3.4. Note

that, for each element, the sum of the stream-wise separation coefficients must sum to one

(which enforces conservation of mass), and that each isotope of a given element is treated the

same (since we’re representingchemicalprocesses, not physical ones).

Figure 3.4 Conceptual sketch of the reprocessing scheme currently implemented in the sepa-
rations class’s main operation, which divides the materialfrom incoming used fuel
into multiple outgoing product and waste streams. The separations matrix data are
stored asChemBook data structures that each represent the chemistry of one real-
world reprocessing scheme (see Table 3.6).

For now, GENIUSv2 supports four product streams—one for uranium; one for plutonium

and any actinides designed, for non-proliferation purposes, to travel with it; and two avail-

able for arbitrary combinations of minor actinides. These streams were chosen to maximize

the number of real-world reprocessing schemes the model could be adapted to represent and

to ensure that the streams would be useful for constructing avariety of recycled fuel recipes.

However, at least as GENIUSv2 currently operates, it would not be disruptive to change this de-

sign, since fabricators wishing to purchase recycled material do not order from these separated

streams directly (see Section 4.4).
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The data necessary to represent the matrix shown in Figure 3.4 are stored in complex sparse

data structures calledChemBooks. At least as currently proposed, separations plants are likely

to be very large and will probably be expected to adapt to several different separations schemes.

Thus, rather than assigning separations plants a singleChemBook, we store the list of all the

possibilities (some of which are included in the code and others of which users will be able to

provide) as a static11 data member in the separations class. This design provides all separations

plants in a simulation with access to the complete data; as research and testing progress, devel-

opers can implement an appropriate mechanism for helping individual plants choose between

the various options at a given time. This static member and other significant data and functions

for the separations class are shown in Table 3.6.

Table 3.6 Selections from the separations class definition. Function arguments and some mem-
bers omitted for space or complexity reasons.

Member data
Declaration Description
[Inherited data] See superclass (facility) data, Table 3.1.
StreamInventory A buffer of material objects sorted according to the productstream
separatedStreams each object emerged from reprocessing as a part of.
static ChemLib A collection ofChemBook objects storing the data that describe
processData available separation schemes.

Member functions
Declaration Description
[Inherited functions] See superclass (facility) functions, Table 3.1.
void separate() Performs a month’s worth of reprocessing on material from this

plant’s stocks, according to the current separation scheme.

Another outstanding research question for GENIUS developers will be how handle the dis-

crete nature of the materials moving between a facility’s buffers and its process lines. In other

words, though we can think of a discrete material object arriving at a facility as representing

a single shipment or lot of material, we need to figure out whatshould happen as (or perhaps

if) these materials get combined together for processing. Although it probably applies to con-

version, enrichment, and fabrication plants as well, this question of material fungibility takes

11See Appendix A.
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on added significance in the separations context. Batches of used fuel arriving from different

reactors (and possibly after different irradiation and storage times) comprise the variety of the

vintner’s selection of grapes in Piet’s winery analogy (2007) discussed in Section 2.2.1. If we

completely homogenize all material in the black box, we diminish some of that variety. If we

do not homogenize at all, we risk artificially augmenting thevariety by modeling separations

as a heavily batched process instead of a continuous one. There are computational concerns as

well, since the number of discrete separated material objects we can choose from to fill orders

for recycled fuel materials determines the size of the linear program we use to formulate the

recipe approximation problem (see Section 4.4). For now, wechoose avia mediaand effec-

tively homogenize feed stocks as they enter each month. Thus, each month we turn one large

material object (formed from all the used fuel we’ve received since last month) intoS separated

objects, representing the total mass flow of each of theS separation streams ifonly the material

from our single object moved through the system.

3.1.4.3 The repository class

The GENIUSv2 repository class is not yet very sophisticated, but we discuss it in some

detail here because it has the potential to robustly and flexibly support many types of future

analysis. At present, we treat repositories according to the simplistic mass-based load limit

model. Thus, the items of interest in the class definition (see Table 3.7) relate to monitoring

and limiting the mass of material that enters.

The repository class is the only one whosecapacity member represents a cumulative

rather than monthly limit. A convenient side effect of mass-based load limits is that they allow

the code to make decisions about future loading based on a single scalar quantity: the capacity

less the mass that has entered so far. If we’re also willing toassume that the repository is non-

retrievable, then once we’ve incrementedmassIn appropriately, we no longer care about the

materials that have entered the repository, and we can relieve ourselves of the burden of storing

them in memory for the remainder of the simulation. Thus, in the current implementation, the
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dumpMat() method records the mass of newly arrived materials each month and then deletes

them12.

Table 3.7 Selections from the repository class definition. Function arguments and some mem-
bers omitted for space or complexity reasons.

Member data
Declaration Description
[Inherited data] See superclass (facility) data, Table 3.1.
double capacity In the case of repositories, thecumulativelimit on the mass of

material this facility can accommodate.
double massIn The mass of material that has been emplaced in this repository.

Member functions
Declaration Description
[Inherited functions] See superclass (facility) functions, Table 3.1.
void dumpMat() Deletes from memory all the materials currently in thestocks.

The current implementation does not preclude studies of howrepository heat and radiotox-

icity loads change over time; as long as the code stores a record of each material’s composition

at emplacement, the sum of all materials’ contribution to these loads can be reconstructed as a

post-processing step, if desired. However, if we wanted to enforce other repository load limits

dynamically, the repository class would need to change somewhat. An obvious and useful ex-

tension of current capabilities that would still allowdumpMat() to delete emplaced materials

outright would be to adopt Radel’s methodology (2007) for dynamically converting material

composition to a characteristic repository length, based on the three temperature limits that

also constrain allowable loadings. However, her work and the limits themselves were based

on Yucca Mountain-specific heat transfer calculations and would not be directly applicable for

modeling repositories at other sites.

Many possibilities for retrievable repository storage, dynamic load limiting, and other

repository modeling problems of interest become possible if we are willing to sacrificesome

discrete-materials data and devise a means of modeling the material in the repository in a more

12The material class destructor (the function that gets called to delete a material object) is written such that it
sends its history data to the bookkeeper just before deletion. Thus, deleting materials does not mean we lose their
associated records (see Section 3.2.2)
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memory-efficient manner than simply storing millions of discrete material objects in mem-

ory. For instance, one can imagine that it might be desirableto incorporate some sense of the

geometry of a repository by modeling the contents of each drift (tunnel) in some aggregated

way.

3.2 Simulation machinery

Having thus described the component parts of the GENIUSv2 fuel cycle model, we move

now to the mechanisms by which we help those actors work together in a coordinated simu-

lation. Pidd organizes his discussion of this aspect of codes like GENIUS (which are known

in the management science and operations research literature asdiscrete event simulations) in

terms of asimulation clockthat moves time forward, anexecutivethat oversees entities’ coop-

eration, and anevent listthat records what happened (Pidd, 2003, p. 239-241). In GENIUSv2,

these functions are handled by the timer, manager, and bookkeeper, respectively.

3.2.1 Timer

Like it’s predecessor, GENIUSv2 uses a one-month time step,which has been deemed

appropriate for capturing the appropriate level of detail.It might at first seem as if a three- or

even six-month time step would be sufficiently small, since real-world reactors operate on 12-,

18-, or 24-month cycles in order to time their outages with the spring and fall nadirs in seasonal

energy demand curves. However, in the DF/DM paradigm where we’re interested, in part, in

fuel cycle supply chain robustness, it seems wise to divide time more finely. By choosing a

single month, we can model delays on roughly the order of the length of a reactor refueling

and maintenance outage. The GENIUSv2 defaults are for a 1200-month simulation that begins

in January, 2010, but non-standard durations and start years can be given as command-line

arguments. The code converts all dates given in the input fileto a system where each month is

represented by an integer, witht = 0 representing the start month.

Once the code has completed reading of the input file and construction of the model spec-

ified therein, the timer begins passing time-step messages to the simulation objects, two per
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month. The mechanism for this advancement is as follows: Each simulation entity (regions,

institutions, and facilities) and the manager implement methods calledhandleTick() and

handleTock(), each of which takes the single argument of an integer that gives the current

time. The timer invokes this method on the manager, which in turn invokes it on all the regions,

which in turn invoke it on their member institutions, etc. Most of the important business of a

time step is handled during the tick phase. For instance, if an institution’s plan for building

new facilities indicates that it should begin constructionon one this month, it instantiates one

and adds it to its collection. Similarly, if it’s time for a facility to begin a new operating cycle,

its handleTick() function will invoke itsbeginCycle() function, which might set in motion

any number of actions including making requests and offers for material and performing char-

acteristic operations on the material it already has. Because the first task each entity performs

during the tick phase is to pass the tick on to whatever entities it’s responsible for, the final

entity to actually handle its assigned jobs is the manager itself. Thus, by the end of the tick

phase, the manager is able to “take stock” of the system as a whole; it has received reports from

all the entities that currently want to be matched with a supplier or customer.

The first action that happens after the manager’shandleTick() method returns and the

timer issues the tock is that the manager performs an algorithm for deciding on the set of ac-

tions the system should take and issuing the corresponding instructions—usually by invoking

theexecuteOrder() functions on the suppliers that it has matched to customers.Once these

instructions have all been issued and followed (that is, allmaterial transactions have been com-

pleted), the tock gets passed down the R-I-F hierarchy, and each entity performs the internal

bookkeeping tasks necessary to record what it did this month. The main such task is record-

ing an entry in an internal capacity factor log; for instance(using our previous notation), if a

conversion facility with a monthly capacity ofZmonth tons of uranium hexafluoride actually

converted onlyZ tons, then it records a capacity factor ofZ
Zmonth

.

The timer class, as well as the manager and bookkeeper, are implemented as singleton13

classes. The timer is an especially useful object to implement in this way, because then any

13See Appendix A
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object that needs to check the time—from within a function that doesn’t take the time as an

argument, that is—can do so without having to store a reference to the timer as a data member.

3.2.2 Bookkeeper

The bookkeeper class, tasked with recording the state of thesimulation in an output file,

also takes good advantage of the features of the singleton design pattern; rather than forcing the

bookkeeper to somehow keep tabs on every single object in thesimulation, we make sure that

each object can instead get in touch with the bookkeeper, notifying it of the important events

that need to be recorded. There’s no need to do so immediatelyafter those events, though.

Facilities and materials keep track of their own histories until they’re deleted—either at the end

of the simulation or when the code decides they no longer needto be tracked. Thus, when a

facility’s destructor is called, the last thing it does is call the bookkeeper’swriteFac()method,

which collects and writes out the information that needs to be included in the output file (see

Section 3.3). A similar procedure applies for writing out material location and composition

histories, and also those of the batches (if batch- rather than assembly-wise tracking has been

selected). Another attractive feature of this design is that the bookkeeper serves as a “wrapper”

around the interface that gets used to write the output file, appropriately encapsulating the code

that depends on that interface. Thus, if future developmentcalls for the output file format to

change, only the code within the bookkeeper class needs to berewritten.

3.2.3 Manager

The manager has the most difficult job of any class in GENIUSv2. I gestured toward

this job in the description of the timer: During the tick phase, the manager collects informa-

tion about the needs of various entities throughout the model. At the beginning of the tock

phase, itsmatch() method attempts to identify the optimal routing for meetingthose needs

in accordance with the objectives of the fuel cycle system asa whole. Chapter 4 presents
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optimization formulations for making these decisions, butbecause those methods are encapsu-

lated elsewhere, we’re in a position now to describe the overall procedures for the manager’s

data-collection and instruction-issuing tasks.

Figure 3.5, an extension of the fuel cycle model shown in Figure 3.1, illustrates how the

members of the R-I-F hierarchy participate in this procedure. The mechanism for that partici-

pation is the passing ofmessagesfrom entity to entity. When a facility has a product or service

to offer, or a request for the product or service of another facility, it constructs an instantia-

tion of the message class and encodes the details of its offeror request therein. The important

data included in a message are the commodity being offered orrequested, the amount of that

commodity available or required (a sign convention specifies whether the amount represents an

offer or request), and information about the entity sendingthe message.

Although, as a singleton class, the manager is directly reachable by all simulation objects,

we instead use the convention that messages get passed up thehierarchy and reach the manager

after being examined by the originating facility’s institution and region. We made this deci-

sion in the hope that as GENIUSv2’s R-I-F hierarchy becomes richer and more meaningful,

institutions or regions might modify messages based on their own “wider view” of the state of

the hierarchy below them, perhaps even taking an active rolein matching customers to sup-

pliers. For instance, a vertically integrated institutionthat owns several different kinds of fuel

cycle facilities is less likely to seek outside suppliers ofcommodities it is capable of producing

itself. Thus, it’s conceivable that at some time we may wish for institutions to intercept and

handle messages that are requests or offers for in-house commodities from the perspective of

that institution. The same methodology might be applied to regions. These methods might

be advantageous from a modeling-realism perspective, but it also seems likely that they could

harm the system’s ability to seek out globally optimal solutions; developers will need to take

great care in determining how to use them appropriately if and when they are implemented.

For now, we merely note that, in accordance with GENIUSv2’s flexible design philosophy,

the capability for this message interception technique is present in the model (at negligible

computational cost) and can be used if deemed appropriate.
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Figure 3.5 Messages representing offers and requests get passed up thehierarchy for matching
during each time step. Future implementations may allow institutions or regions to
handle some matchings themselves, when appropriate. Afterthe manager performs
the matching, it issues corresponding instructions to the suppliers. Image adapted
from Wilson and Oliver (2007).

For now, though, all messages reach the manager. As they arrive, the manager sorts and

stores them by commodity and by whether they’re offers or requests. When it starts to match

them at the beginning of the tock phase, it does so in a very specific order. The need for the

order is related to a supply chain challenge caused by the aforementioned problem of material

fungibility.

Some commodities, like yellowcake and unenriched uranium hexafluoride, are highly fun-

gible; they have a predictable composition, and equal amounts of these commodities can be

exchanged for one another without adverse consequences. Thus, unless we have a strong desire

to study the effects of variability of uranium ore quality and therefore to vary the composition

of yellowcakes from one mine to another, mines can make reliable and unambiguous mate-

rial offers by simply calculating the mass of yellowcake they have on hand and only offering

that amount. Enrichment plants, on the other hand, cannot make such unambiguous offers of

material. The commodity they deal in is less fungible because value is added continuously to

the uranium hexafluoride as it is enriched to higher and higher U-235 mass fractions; no one
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would trade equal masses of uranium one for another if they had different enrichments. Thus,

without knowing something about the enrichment needs of fuel fabricators, there is no way for

an enrichment facility to offer a meaningful quantity of material, as product; it doesn’t know

how much that product will need to be enriched.

Instead, we let suppliers of less fungible material offerservicesrather thanproduct. An en-

richer’s offer then specifies not the quantity of material itcan make, which is under-determined,

but the amount of enrichment it can perform, which is fully determined by the plant’s capacity

less any outstanding commitments. Buyers of less fungible material, on the other hand, spec-

ify the exact composition of the material they want—a total mass and an enrichment, in the

case of uranium hexafluoride. The manager then bears the burden of translating the quantity

given, in either the offer or the request, to reach a common unit that can serve as the basis for

determining supplies and demands and finding a desirable matching.

This matching strategy has the following consequence: suppliers of front-end fuel cycle

services(enrichers and fabricators) may need to order feed materialafter being matched to

a customer. As an illustration, note that in order to minimize the logistical lag time that can

result from a reactor ordering enriched uranium oxide fuel,the manager matches the relevant

commodities in this order: (1) fuel requests with fabrication offers, (2) enriched uranium hex-

afluoride requests with enrichment offers, and (3) unenriched uranium hexafluoride requests

with offers of same (the complete order is given in Table 3.8). This way, if a fabricator does

not have suitable material on hand to construct a fuel batch ordered by a reactor, it immediately

orders the enriched material it needs, and that order arrives at the managerbeforethe manager

matches fabricators to enrichers. A similar procedure occurs if the enricher does not have suf-

ficient and suitable material to enrich. Any unmatched orders for these non-fungible material

are stored by the manager, which re-attempts to match them during the following time step.

The order of commodity-wise matching is just one of a number of problems that we might

label fuel-cycle “tuning.” The goal of such tuning is to ensure that delays in material avail-

ability result only from cases where there is a legitimate real-world bottleneck or material
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Table 3.8 Current manager order for matching fuel cycle commodities.
Enumeration Full name
eUoxFuel Enriched uranium oxide (LWR) fuel
uUoxFuel Unenriched uranium oxide (PHWR) fuel
moxFuel Mixed oxide (recycled) fuel
eUF6 Enriched uranium hexafluoride
uUF6 Unenriched uranium oxide fuel
cake Yellowcake (uranium ore, mostlyU3O8)
usedFuel Used fuel from all reactor types

shortfall, not from places where the behavior of the simulation entities or manager is insuffi-

ciently sophisticated to deliver the necessary material when it is theoretically possible to do so.

Admittedly, tuning the fuel cycle’s behavior involves building in various decision heuristics

about when and how facilities should offer or request goods and services. I believe the long-

term goal of these tuning activities should be to identify and build in whatever decisions are

an absolute given in the real-world and to parameterize the rest, requiring these parameters to

be user-specified or part of the future optimization engine’s parameter space. For instance, if

we were to discover that the fuel cycle performs best when enrichers and fabricators maintain

backup stocks of raw materials (perhaps guessing the specifications of future fuel orders based

on the distribution of past orders), then the exact amount (and in the case of the fabricator, the

enrichment) of backup material these facilities should attempt to maintain might be an input

parameter worth exploring.

I should be clear that, as currently implemented, the set of default facility and manager

behaviors that together determine the system behavior of possible GENIUSv2 fuel cycles are

not very well tuned. In order to simply get all of the basic features and functions desired for

GENIUSv2 in place (and to do so in a relatively straightforward way), I have tried to make

the simplest possible (and therefore often naive) choices about how facilities and the manager

behave. This is a necessary starting point for the more sophisticated modeling that can now

evolve as developers tune the structures that are in place.
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3.2.4 Other classes

A few minor support classes exist in GENIUSv2 and have not yetbeen discussed. The

two most prominent are the solver wrapper and the input reader, which serve analogous roles

to the bookkeeper from an encapsulation perspective. Just as the bookkeeper is a GENIUS-

friendly interface to the software tool used for recording output files, so is the solver wrapper a

simplified interface to the external solver technology GENIUS uses for optimization problems.

This class will be discussed in the next chapter. Similarly,the input reader wraps around and

handles the parsing of the input file, constructing the simulation’s initial condition as it does

so. I discuss it below.

3.3 Input/output infrastructure

As should now be obvious, a large and highly structured volume of data must be passed in

to GENIUS to describe a meaningful fuel-cycle scenario, andan even more challenging data

set needs to be returned by the code in a way amenable to efficient post-processing. Because

nuclear fuel cycle modeling is a fairly immature field (compared to core physics modeling and

other more physical problems that nuclear engineers have studied for years), there are not yet

any standardized text or binary file representations for fuel cycle input or output data. While

the GENIUS-specific model we present here is unlikely to fill that role, my hope is that it can

serve as a possible model for how to take advantage of modern scientific computing resources

to robustly populate and visualize fuel cycle systems models.

One natural way to capture both the hierarchical structure of the data needed for GENIUS

input (descriptions of the various regions, institutions,and facilities) and the transactional struc-

ture of its most important output data (material location histories) is via a relational database

methodology. The popular SQLite database (SQLite Consortium, 2008) is a natural choice be-

cause it requires little overhead; is highly stable, standardized, and well tested; and is freely

available to anyone as open-source software. Moreover, it is supported via a built-in interface

by the Python high-level programming language (Python Software Foundation, 2006). Python
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is another well supported and highly popular open-source computing tool with extensive li-

braries for numerical and scientific computing. Myself and other members of the GENIUSv2

development team have written and maintain adaptable pre- and post-processors that I expect

will continue to improve GENIUSv2 ease of use. These processing libraries themselves are

somewhat beyond the scope of this paper, but the design of theinput and output file format it-

self is not. For more information about actually constructing these SQLite databases, including

some limited efforts to extract Juchau’s hard-coded GENIUSv1 input data into a GENIUSv2-

compatible database, contact CNERG athttp://cnerg.engr.wisc.edu.

3.3.1 Scenario specification

Conceptually, creating a GENIUSv2 input file requires specifying (1) all the regions, insti-

tutions, and facilities in the model at the beginning of the simulation (i.e., an initial condition),

(2) the static plans for when each institution should build future facilities, (3) the parameters

of these generic future facilities, and (4) a set of rules describing non-standard relationships

between members of the R-I-F hierarchy, if desired (see Section 4.2). The first two tasks are

accomplished by populating database tables calledRegions, Insts, andFacs; the third, by

populating tableFacParams; and the fourth, by populatingRules. While these five tables are

likely to persist indefinitely, it has unfortunately been myexperience that it is very hard to

stabilize the set of required columns in each table. When GENIUSv2 “goes public, ” it will be

important for the development team to publish clear instructions about which input parameters

are required for running a simulation with a given stable release. For instance, whenever devel-

opers add a new modeling parameter that needs to be specified by the user, code must be added

to read this parameter from the appropriate column—code that will likely need to complain if

a given input file does not contain that column.

A current listing of each table’s required columns is given in Appendix B, but a glance at

an actual example should sufficiently illustrate the overall approach. Figure 3.6 shows screen

shots of several tables from a fairly simple input file14. The most intuitive is the first, theFacs

14It’s actually the real input file used for one of the demonstration problems (see Section 5.1.2).

http://cnerg.engr.wisc.edu
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table. We can see from the number of rows that this scenario includes six initial facilities, and

the fourth and fifth columns (yearStartOp andmonthStartOp) tell us that all of them start

operation in January 1970. The second-to-last visible column (type) shows that they are all

front-end fuel cycle facilities (mine/mills, conversion,enrichment, and fabrication), and the

fact that each will exist 1560 months (see Column 7,lifeTime) suggests this simulation is not

designed to model the detailed comings and goings of fuel cycle facilities with more realistic

lifetimes. Clearly, this is a simplified and idealized demonstration problem, at least from the

perspective of the fuel cycle support facilities.

But where are the reactors? Unfortunately, it’s difficult to tell for this problem, in which I’ve

chosen not to fully describe any “historical” reactors in theFacs table. Reactors will be built;

we just can’t see where they are in the tables. While a databaseis appealing for displaying and

perhaps even entering input information that is representable as text or as scalar values, vector

quantities present a slight complication, at least at first glance. But it turns out that SQLite

supports a data type called a blob, which is a simple chunk of binary data. GENIUSv2 and its

pre- and post-processors all acknowledge a data conventionfor storing vectors of either integers

or double-precision values as a blob. These blobs can be stored in a single database column,

but they can’t be rendered by the database browser because, to it, blobs are just raw binary data.

The column labeledbuild in theInsts table actually encodes complete sets of instructions

for how each institution should build certain future facilities at certain times. Wecanactually

tell what each of these future facilities will look like by examining theFacParams table. Since

there’s only one row defined, we know that all facilities built during the the simulation will

be pressurized water reactors (we’ve named this model “Generic PWR”) with the parameters

given in the subsequent columns.

An input reader object performs the tedious but straightforward task of reading through

each table and instantiating the various GENIUSv2 objects and data structures necessary to

build the model described in the database. Because of the relative difficulties of writing C++

and Python code, and especially working with each language’s interface for reading SQLite

databases, we let the input reader assume that the given input file is valid, leaving the seemingly
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Figure 3.6 Partial views of a three tables from a sample GENIUSv2 input file.Note that vector
quantities can be stored as blobs that can be read by the code but not rendered in
this database browser. See Appendix B for a complete description of each table and
its columns.

endless task of input file validation to the pre-processor. Once the input reader has read all

the tables and created all the objects, the application instantiates a timer that can handle a

simulation of the length and start time passed to the code as command-line arguments. The

simulation then begins.
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3.3.2 History recording

The output file for GENIUSv2 is a copy of the input database to which the bookkeeper adds

extra tables and extra columns in the existing tables. As discussed in Section 3.2.2, the oper-

ational history of facilities (the GENIUS time at which theybegan operating and their actual

capacity factors, by month, thereafter) and the location and composition histories of materials

gets sent to the bookkeeper just before these objects are deleted from memory. Recording the

facility output is very straightforward; for facilities that were explicitly specified in the original

input file (i.e., not part of a future build plan), we only needto add the history information

to their entry, which already exists. These data go into special startOp andcapLog columns

that GENIUS adds to theFacs table. The latter column is again a specially formatted blob

representing a vector of doubles.

Material histories get spread across the two tables shown inFigure 3.7,MatFacHist and

MatIsoHist. Unsurprisingly, each of the transactions that the material recorded about itself

during the simulation shows up as a row inMatFacHist. Each row records the ID number of

the material that was transfered, the time the transfer tookplace, the integer identifiers of the

source and destination facility (thefacIDs from theFacs table, of course), and a composition

identifier that links this row inMatFacHist to the row inMatIsoHist that stores the isotopic

composition at that particular time (another specially formatted blob). For those times when a

material was “decayed on demand,” the entry inMatFacHist contains duplicate entries in the

fromFac andtoFac columns.

The navigation buttons near the bottom of each screen shot inFigure 3.7 show the number

of individual records in each table. Thus, we can see that the770 facilities in this simula-

tion (764 of them reactors) created and used materials that underwent 55,850 discrete facility-

transfer or decay events and exhibited 92,260 isotopic states that were recorded. The total

output file size was 11.6 megabytes.

A couple of concluding remarks are called for here. First, note that, for the kinds of early

demonstration problems I discuss in this thesis, the data inthese large output files is hugely

redundant. The 700+ identical reactors all eject identicalbatches of material characteristic of a
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Figure 3.7 Partial views of the two material history tables from a sample GENIUSv2 output
file. We can observe high level of detail in DF/DM modeling by noting the large
number of records in each table. Recall that blob data (MatIsoHist’s comp column)
cannot be rendered by this browser but is present.

particular burnup value implied by the input and output recipes assigned to the single generic

reactor type. And the same enrichment plant and fabricationfacility work together to fabricate

that same input recipe over, and over, and over. The important thing to remember is that what

looks like massively inefficient overkill now is appropriately robust for larger, more detailed

and realistic problems, especially when the code is capableof simulating arbitrary burnups.
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Although writing to the database is a slow operation, the highly detailed records of simulation

history data that this output design can accommodate is the veryraison d’̂etreof DF/DM codes.

Second, let me also mention that this tabular scheme for material histories is a very com-

pact representation of a huge 4-D dataset whose axes are the time, the originating facilities,

the destination facilities, and the masses or number densities of each isotope. Although doing

so sometimes requires clever pre-collapsing of the datasetat the time the database is queried,

it is highly convenient to construct this 4-D array (or subsets of it) when examining GENIUS

output data. Thus, we see that another advantage of the SQLite/Python work flow is the exis-

tence of robust scientific and numerical tools for data manipulation, making it comparatively

simple to add sophisticated data analysis and visualization capabilities to the GENIUSv2 post-

processor. This ease stands to benefit end users interested in standard fuel cycle visualizations

but uncomfortable with the tricky task of extracting usefulinformation from so large a data set.

3.4 Summary

This chapter described the design and implementation of GENIUSv2, including its model

of the nuclear fuel cycle, the support machinery that help the simulation objects work together

and that record the results of this cooperation, and the infrastructure for passing input to and

receiving output from the code itself. Central to the functioning of this design is the manager,

which receives messages regarding the state of supply and demand in the fuel cycle system

and issues instructions for matching customers to suppliers. What remains to be explained in

Chapter 4 are the mathematical formulations that govern these matching processes.
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Chapter 4

Optimization formulations

Chapter 3 described the novel modeling capabilities and robust software design of GE-

NIUSv2. This chapter discusses the other main contributionof this work, formulations for

some of the optimization problems either raised by or made more important by the DF/DM

modeling paradigm.

Without venturing a precise formulation, we note first that the purpose or objective of a

global nuclear fuel cycle from an optimization perspectiveis to come as close as possible to

meeting the electricity needs of each region for as low a total cost as possible. Of course, a

tremendous amount of work is needed to make that definition precise. For instance, we might

ask if the objective function should penalize overproduction of electricity, or how to factor in

costs associated with, say, nuclear waste disposal. But, in theory, if we believe that we can

turn the various aspects of fuel cycle system performance into costs, then some kind of cost-

minimizing optimization approach ought to be effective in identifying promising nuclear fuel

cycle designs.

However, implicit in our decision to try to tackle this optimization problem via discrete-

event simulation1 is the acknowledgement that an explicit form for fuel cycle system optimiza-

tion would be very challenging to identify, let alone solve.The system is highly complex,

comprised as it is of differentiated components (facilities) that depend elaborately on one an-

other, many of them operating nonlinearly on the materials they process. Merely identifying a

1Of course, the decision to make GENIUS a discrete event simulation was not based wholly (and perhaps
not even in part) on optimization considerations. Indeed, the desire to perform direct simulation and to analyze
DF/DM data are the prime motivators and optimization a secondary concern.
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self-consistent set of constraints to describe how the system as a whole operates (to say nothing

of constraints on how individual facilities may be deployed) is a daunting and quite possibly

fruitless undertaking. In a review of supply chain optimization problems similar to our nu-

clear fuel cycle context, Vidal and Goetschalckx focus on mixed-integer program formulations

(Vidal and Goetschalckx, 1997). These problems are NP-hardin general (Gray et al., 1997),

and even techniques for solving well studied mixed integer programs with important applica-

tions are perhaps beyond the level of mathematical sophistication and computational expense

appropriate for a code like GENIUS, at least for the time being.

Instead, we make a series of simplifying assumptions, the first of which suggests the frame-

work illustrated in Figure 4.1. We assume that, for agivenfuel cycle design (including a facility

deployment plan and perhaps values of other important parameters describing those facilities

and how they work together), there exists some optimal plan for routing materials through the

system over the duration of the simulation. Such a plan will minimize the cost of operating the

fuel cycle, including possible contributions from the penalizing cost of under-producing the

specified amount of electricity in each region. The ultimatetask of the simulation manager’s

matching efforts is to solve this materials routing problem(MRP). In fact, it’s not unreasonable

to think of the course of normal GENIUSv2 operation as identifying, simulating, and record-

ing the material flows and facility operation histories thatcorrespond to an MRP solution for a

given fuel cycle scenario. Future developers can then attempt to solve the outer fuel cycle de-

sign problem (FDP) iteratively via optimization toolkits that search the input decision space2.

Most of the remaining simplifications we will make relate to how we solve the MRP itself and

are discussed in Section 4.2.
2This nested “division of computational labor” is not unlikefamiliar approaches to other optimization prob-

lems of interest to nuclear engineers, especially pin placement in reactor core engineering. The main difference
is that, in this context, the “inner simulation” itself alsoincludes an optimization problem (as opposed to the core
physics radiation transport problems solved repeatedly inthat more typical example).
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Figure 4.1 Decomposition of the task of fuel cycle optimization into a design problem to be
solved iteratively (and externally) and a routing problem to be solved during the
simulation.

4.1 Linear and network flow programming

We choose as our optimization strategy for solving the MRP a set of formulations from

network flow program (NFP) theory. Network optimization problems adopt fairly naturally to

our fuel cycle context because they too are concerned with the flow of material from sources

(in our case, suppliers) to sinks (customers). This sectionserves as an introduction to NFPs,

since they are likely unfamiliar to a nuclear engineering audience. However, because network

programs are a special case of more general optimization problems known as linear programs

(LPs), and because we use these more general methods in tackling another fuel cycle optimiza-

tion problem, we first introduce them.

A linear program is an optimization problem where we wish to minimize or maximize a

linear objective functionof some vector, subject to a set of linear constraint equations on its

components. Using the LP notation of Ferris, Mangasarian, and Wright (2008), we first define
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the variablesx as the following column vector of non-negative components:
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We can then define a constraint-equation coefficient matrix,A, a constraint-equation right-

hand-side vector,b, and a set of objective-function coefficients,p, like so:
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If we call the objective function valuez, then one possible way to state the LP is

minx z = pT x

subject to Ax ≤ b, x ≥ 0
(4.1)

where the superscriptT indicates the transpose operator. Ferris and colleagues note that prob-

lems with any linear objective function subject to a system of linear constraints (including ones

where thex components are not necessarily non-negative or the constraints are given as strict

equalities or some combination of the “≤, ” “≥, ” or “=” operators) can be expressed in this

form via a series of standard transformations (2008, p. 9).

Not all linear programs have an optimal solution. First, a problem can beinfeasible, which

happens when the region ofN -space that satisfies all the constraints, the so-calledfeasible

region, is null. Sometimes infeasibility is easy to spot, as in whenseparate inconsistent con-

straints exist on a single variable (for instance,x2 ≥ 0 andx2 ≤ −3). But for large constraint

sets of many variables, infeasibilities can easily escape one’s notice, so it’s important that solu-

tion algorithms know how to check for them along the way. Second, an LP can beunbounded,

which means the feasible region is infinite along a directionthat causes the objective function

to increase or decrease (for maximization and minimizationproblems, respectively), which

meansz can be arbitrary large or small and hence no optimal value exists. Again, solution

algorithms must recognize this behavior.
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The possibility of a highly simplified sketch like this one notwithstanding, LPs are well

studied problems with a rich theoretical underpinning and robust solution algorithms for large

problems. These algorithms include the classicsimplex methodand a number of newer and

sometimes faster methods and are implemented in a wide rangeof solver software. The

proprietary CPLEX solver (ILOG, 2008) is the gold-standard,but well maintained and high-

performing open-source solvers exist as well. These include the COIN-OR project’s CLP li-

brary (2007), which GENIUSv2 currently uses to solve LPs.

The generality of Equation 4.1 hints at the ease with which LPs can be adapted to a variety

of specialized optimization and modeling contexts. Often,these more specific formulations

have given rise to sophisticated literatures of their own and solution methods with greatly

improved performance. Linear network flow programs are one such example, a sort of lin-

ear programming-meets-graph theory subfield useful for modeling problems where fluid, data,

goods, traffic, or decision-logic flow fromsource nodesto sink nodesthrough a network of

arcs (and possibly sometransshipment nodesthat neither produce nor remove flow). Figure

4.2 shows a simple four-node, four-arc network with two sources and two sinks.

Figure 4.2 A very simple linear network with two sources and two sinks. Unit flow on the
diagonal arcs is more expensive than on the horizontal ones.

Using the notation from Bertsekas (1998), we describe a linear network program in terms

of its node setN and its arc setA. Each nodei ∈ N has an associateddivergence, si, a
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net in- or out-flow that is positive for sources, negative forsinks, and zero for transshipment

nodes. Each arc inA has a unit flow cost,aij, and a range of valid flow values,[bij, cij]. Thus,

the constraints for this NFP are that the flowxij on each arc(i, j) is within its flow bounds

(Equation 4.2) and that the divergence constraint at each node is satisfied (Equation 4.3):

xij ∈ [bij, cij]∀(i, j) ∈ A (4.2)

∑

j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji = si,∀i ∈ N (4.3)

(Note immediately that
∑

i∈N si = 0 is a necessary condition for feasibility; this is an important

consideration when modeling practical problems in which there is no guarantee that supply

equals demand.) The objective in a minimum cost network flow problem is to satisfy the flow

constraints while minimizing the total cost of the flow,
∑

(i,j)∈A aijxij. Thus, the complete

formulation is given by Equation 4.4:

minx

∑

(i,j)∈A

aijxij

subject to xij ∈ [bij, cij], ∀(i, j) ∈ A
∑

j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji = si,∀i ∈ N

(4.4)

Careful examination of Equation 4.4 reveals that it is indeeda special case of Equation

4.1. However, it turns out that the matrixA in Equation 4.1 has a special structure for network

flow programs, a structure that can be exploited to greatly simplify the solution methods for

these problems. Thus, they can be solved via thenetworksimplex method or other specialized

algorithms, which Chinneck reports can be hundreds of times faster than the normal LP simplex

method (2007). The CLP library includes mechanisms for taking partial advantage of network

problems’ special structure, but it does not implement a full-fledged network simplex method

(Forrest et al., 2004). However, the network programs we currently solve in GENIUS are not

unreasonably expensive even when solved with standard LP technology.
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4.2 Materials routing problem: Formulation

While it is easy to intuit the usefulness of network formulations for solving the GENIUSv2

MRP, two major difficulties bar us from modeling the nuclear fuel cycle with Equation 4.4 di-

rectly. The first is that this standard form is meant for the so-calledsingle-commodityproblem.

All the flows xij must be in some sense homogeneous; a single cost and pair of flow bounds

must apply to all the flow on a single arc, and the divergences of sources and sinks must mea-

sure the production and removal of the same basic material. It seems unlikely that a useful

formulation exists for modeling the nuclear fuel cycle witha single-commodity network flow

problem; even if we overlookmc2 losses in the reactors and pretend that total mass is conserved

(which would allow the flow conservation constraint in Equation 4.4 to apply throughout the

network), the fuel cycle materials flowing through the various sectors of the fuel cycle are too

heterogeneous to expect a single-commodity, “one-mass-fits-all” formulation to be useful. We

simply care too much about the differences between materials in different parts of the fuel

cycle (their chemical and physical form, their isotopic composition, enrichment and criticality

profiles, etc.) to ignore their differences, and we must therefore treat yellowcake, enriched

uranium hexafluoride, fabricated fuel, various waste streams, etc. as distinct commodities.

Unfortunately, multi-commodity NFPs are much more generaland complex. In anM -

commodity problem, we solve for the total flow vector

x = (x(1), . . . , x(M))

subject to commodity-wise flow constraints,

∑

j|(i,j)∈A

xij(m) −
∑

j|(j,i)∈A

xji(m) = si(m),∀i ∈ N, m = 1, . . . ,M,

and another constraint set,X, “which may encode special restrictions for the various com-

modities” (Bertsekas, 1998, p. 350). The latter constraintsare analogous to the flow bounds

(Equation 4.2) in the single-commodity form, but they can bemuch more general because,

in addition to bounding the flows ofindividual commodities on a given arc, they can spec-

ify the nature and size of variouscompoundflows on that arc by bounding sums of several



64

commodities. For instance, a limit on the amount of enrichedmaterial that can pass between

two points could be implemented as a bound on a linear combination of the flows of enriched

uranium, fresh fuel, used fuel, etc., but not of yellowcake,unenriched uranium, or separated

fission products. Thus, the general form of the multi-commodity problem is given by Equation

4.5:
minx f(x)

subject to x ∈ X
∑

j|(i,j)∈A

xij(m) −
∑

j|(j,i)∈A

xji(m) = si(m),

∀i ∈ N, m = 1, . . . ,M

(4.5)

Strictly speaking, this is probably the most appropriate NFP for the network formed by

the facilities of the nuclear fuel cycle. But consider the nature of the commodity-wise flows

between fuel cycle facilities. Note that if we choose two arbitrary fuel cycle facilities, we

know that either no arc will connect them (mines send no material directly to reactors, for

instance) or, if an arc does exist, we know precisely which (single) commodity will flow on it

(for example, the only material that will travel from a conversion plant to an enrichment plant

is unenriched uranium hexafluoride). The only exception is the case of a facility that sends two

different types of waste to the repository; I will address later on the unique challenges posed

by the repository.

The highly simplifying effects of the observation in the previous paragraph allow us to

derive a more practical formulation of the routing problem.We can reduce the very difficultM -

commodity problem toM single commodity problems if we first show that both the constraints

and the objective function in our application are separableand we then decompose the setsA

andN in accordance with that separability to arrive atM separate networks. Of course, we

could simply have asserteda priori the applicability of Equation 4.4 to the network formed by

the buyers and sellers of each fuel cycle commodity and skipped this discussion entirely. But

since we have an eye toward global optimization, and since the fuel cycle as a whole is clearly

a multi-commodity system, it’s worth stepping through these simplifications explicitly so we
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can have some confidence that the decision to use LP technology and solve single-commodity

problems does not necessarily put us any further from our eventual goal than if we’d used more

sophisticated multi-commodity methods.

First of all, note that our fuel cycle system satisfies the conditions of what Bertsekas calls

theseparablemulti-commodity problem (1998, p. 350). The constraints are separable because

the flow of commoditym on arc(i, j) cannot be constrained by the flow of commoditym′

on that same arc if the nature of the facilities associated with i andj and the functioning of

the network as a whole are such that no commodity other thanm should ever flow on(i, j).

Similarly, this behavior is more than sufficient to ensure the applicability of the cost function

given in the following formulation of the separable problem:

minx

∑

(i,j)∈A

fij(yij)

subject to xij(m) ∈ Xij(m),m = 1, . . . ,M
∑

j|(i,j)∈A

xij(m) −
∑

j|(j,i)∈A

xji(m) = si(m),

∀i ∈ N, m = 1, . . . ,M

yij =
M
∑

m=1

xij(m), ∀(i, j) ∈ A

(4.6)

Again, if our observation about realistic flows in the fuel cycle is true, than only a single

commodity will ever flow on each arc(i, j). Thus, there is only one term in the summation

defining each total flowyij, so we can definefij(yij) to simply equalaijyij, whereaij is an

appropriate arc cost for the flow of that single, predictablecommodity on arc(i, j).

Finally, letNm andAm be the commodity-specific node and arc sets. For instance, whenm

represents mixed-oxide fuel, the nodes inNm are MOX fuel fabricators and MOX fuel-powered

reactors, and the arcs inAm are the possible links between those fabricators and reactors. We



66

can use the subsets to specify the terms from Equation 4.6 that drop out under this assumption:

xij(m) =











xij if (i, j) ∈ Am

0 if (i, j) /∈ Am

Xij(m) =











[bij, cij] if (i, j) ∈ Am

0 if (i, j) /∈ Am

si(m) =











si if i ∈ Nm

0 if i /∈ Nm

yij =











aijxij if (i, j) ∈ Am

0 if (i, j) /∈ Am

With these definitions in place, we can rewrite Equation 4.6 (one separable problem) as Equa-

tion 4.7 (M distinctproblems):

∀m ∈ {1, 2, . . . ,M} :

min
∑

(i,j)∈Am

aijxij

subject to xij ∈ [bij, cij], ∀(i, j) ∈ Am

∑

j|(i,j)∈Am

xij −
∑

j|(j,i)∈Am

xji = si,∀i ∈ Nm

(4.7)

So far, we’ve turned the nuclear fuel cycle intoM separate networks. Except at the ex-

treme ends of the fuel cycle, each facility serves as a sourcenode in each network correspond-

ing to that facility’sinventory materials and a sink node in each network corresponding to

its stocks materials. But even with this notion (and Equation 4.7) in hand, we don’t have a

complete MRP solution strategy. We’ve handled the part of therouting problem caused by the

discretefacilities, but we’ve yet to handle the fact that the flows themselves must be discrete

because we modelmaterialsdiscretely as well. For most facilities, we cannot simply turn

monthly capacities into static and continuous supply and demand data for setting divergences
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because actual supply and demand will depend on the month-to-month status of various facil-

ities’ needs—needs that will be met by discrete shipments ofmaterial during the time of that

need. In other words, we need to choose atime horizon, a period over which the networks we

construct will be truly representative of the dynamic status of the facilities that comprise the

various commodity-wise node sets.

Consistent with the pattern of identifying simple strategies first and working toward more

complex ones, I’ve implemented a naive formulation with theshortest-possible time horizon;

each month, the manager (with the help of the solver wrapper) constructs and solves an LP

formulation of the network problem for each of the commodities for which there is currently

supply or demand. Offers of materials or services get turnedinto sources; the quantity given

in the offer message becomes the (positive) divergence value of the node the supplier facility

represents. Similarly, requests for materials or servicesget turned into sinks; the quantity

given in the request message becomes the (negative) divergence value of the node the customer

facility represents3. The solution to the NFP then represents a set of matches of each customer

request to a specific supplier’s offer, and the manager issues instructions for the suppliers to

execute orders according to the nonzero mass flows,xij, in that solution. A discrete material

object representing the matched order then gets constructed appropriately by the supplier and

shipped to the customer.

4.3 Materials routing problem: Discussion and modeling details

This approach represents a credible if not completely rigorous first-step toward global op-

timization of GENIUSv2 material flows. Although the objective function does not calculate

system-wide electricity costs explicitly, we can think of this formulation as minimizing the

cost of providing all reactors with the materials they need to operate at capacity4. When we

3Strictly speaking then, we note that while source nodes represent an entire facility making an offer based on
its full capacity, a customer facility can be represented byseveral sink nodes, since each request gets turned into
a node and a customer can file multiple requests in the same month.

4This description would be even more accurate if the uranium mines and conversion plants operated only in
response to orders that had resulted, directly or indirectly, from reactor fuel orders. That’s already how enrich-
ment and fabrication plants, which currently do no “extraneous” work, operate. We currently allow mines and
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do not wish to penalize the overproduction of electricity orsimulate scenarios where material

costs are so high that it is advantageous to allow reactors tosit idle, minimizing the cost of

keeping the reactor fleets as well fueled as possible is a reasonable approximation to minimiz-

ing electricity costs explicitly. For cases where these twoconsiderationsare important, we may

still be able to choose arc costs that capture the desired effects. Otherwise, we might need to

develop an entirely new (and probably much more sophisticated) MRP approach.

There are two additional drawbacks to the approach outlinedabove. First, this approach

is naive—it carries the assumption that whenever demand exists, it should be satisfied at the

current time if at all possible. Because offers and requests arrive ona month-to-month basis,

clearing them on that same timescale is the most straightforward option. However, while we

almost certainly do not want reactors to sit idle for extended periods of time, there may be

cases where the manager would do well to allow a short delay inorder to secure a cheaper

upstream supply chain. This approach is not sophisticated enough to identify those situations.

We can attempt to address this problem going forward by carefully shifting offer and request

times earlier and establishing a system for lumping many months’ worth of capacity together,

allowing us to solve the flow problems for longer time horizons. Of course, the instructions

inherent in the network solutions would then need to be appropriately “amortized” over that

same number of months.

Second, the decision to continually reconstruct, solve, and discard the mathematical repre-

sentation of the various NFPs is potentially inefficient, especially the current one-month time

horizon. An interesting area for future work is to examine which networks change very little

from solution to solution and somehow take advantage of thatstability to eliminate redundancy

in problem setup and iteration to solution. For instance, wecould begin by checking the op-

timality of the previous solution each time we need to solve anew problem that includes the

conversion plants to operate at capacity in the absence of downstream demand so they can build up reserves of
material, since most of the scenarios we’re interested in modeling involve reactor fleet expansion that eventually
results in high material demand.



69

same nodes as in that previous problem. Similarly, according to the CLP User Guide, the li-

brary can be easily extended in order to create dynamic matrix instances for applications where

the problem structure evolves over time (2004).

Thus, we simply note that we can’t claim to have solved the MRP optimally without either

(1) an objective function that explicitly calculates and minimizes the system cost of electric-

ity or (2) a derivation that shows how some form of the flow-cost-minimizing approach can

guarantee minimum electricity production costs. However,for the time being we can take full

advantage of the reasonable system currently in place to work toward other important aspects

of the modeling work GENIUS is intended for.

4.3.1 Affinity-based arc costs and interaction rules

We have so far discussed theform of our network flow models of the fuel cycle but only

some of the problemdata for those NFPs. The source and sink nodes and their divergences

are determined from the offers and requests that the managerreceives at each time step. But

how do we determine the flow bounds and arc costs? Well, the obvious physical analog to

flow bounds in our system are the constraints (technical and/or regulatory) imposed by the

various rail and highway transportation networks that connect different facilities. Although

we have not explicitly implemented flow-bound constraints at this time (except to say that the

flows must be nonnegative) doing so is now nearly trivial froma coding perspective and merely

requires modelers to choose appropriate bounding values.

More interesting for the time being is the choice of arc costs. Because the form of Equation

4.7 seeks to minimize the total cost of the flow of each commodity, the time-step-wise MRP

solution can be very sensitive to our choice of these costs. We envision that future versions of

GENIUSv2 will include sophisticated economics modules that can choose arc costs via some

appropriate combination of (1) the R-I-F “identity” of the nodes they connect, (2) tabulated data

representing real-world or user-provided costs (or cost distributions) for the various commodi-

ties, such as are available in theAdvanced Fuel Cycle Cost Basisreport (Shropshire, 2007), (3)

long-term contracts and other real-world cooperation mechanisms that can be modeled more
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or less directly, and (4) accounting-based approaches thatset costs dynamically according to

the financial and cash-flow situation of the supplier5.

In describing the arc-cost system currently in place, let meagain emphasize that the strength

of GENIUSv2 is not that it currently accomplishes anything very sophisticated but that its

data structures and encapsulated design sets it up to be a useful test bed going forward. As

the manager and solver wrapper construct the NFP used for determining each commodity’s

routing, they need only make a single function call to determine the cost of each arc. What

goes on in that function call can eventually be as complex as we need, perhaps comprising

some aspect of each of items (1)-(4) above. For now, the call returns what we term anaffinity.

The affinity-based costing mechanism is our simplified way ofallowing the user to specify

complex sets of behavior for material trade within the R-I-F hierarchy. A high affinity for

trade between two facilities results in a low cost on the arc connecting them, and vice versa.

For now, the affinity scale ranges from zero to ten, with special behavior corresponding to the

extreme ends of the scale. If two facilities have a trade affinity of zero for a given commodity,

the manager will not even construct an arc between them when setting up the routing problem;

if their affinity is ten, then the supplier will automatically be instructed to fill the customer’s

request before the network is even built.

Affinities are determined by a collection ofrules. Specified in the input file, a rule manu-

ally sets the affinity for trade of a given commodity (or collection of commodities) between a

supplier region, institution, or facility and a customer region, institution, or facility. If desired,

a start and end date for the rule can also be specified. The manager stores the interaction rules

for the simulation in itsRuleBook, which enforces a consistent precedence convention and will

return the affinity between any two facilities subject to theset of rules that currently applies. If

no rule does, theRuleBook returns a default affinity based on the R-I-F set-theoreticalidentity

of the would-be customer and supplier. These default affinities are given in Table 4.1.

5This final approach most resembles the basic mass-flow/cash-flow model proposed by Jain and Wilson (2006,
Fig. 1).
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Table 4.1 Default trade affinities for determining arc costs.
Customer-supplier relationship Affinity
Both are facilities owned by the same institution 8.0
Facilities are owned by different institutions in same region 5.0
Facilities are in different regions 2.0

Even this relatively simple system provides the means for richly describing patterns of fuel

cycle system behavior because the idea of affinities is meaningful but flexible. For instance,

we may make the modeling decision that an international corporation can be represented by a

series of distinct institutions in each region with a rule that says the affinities for trade between

each of them are equivalent to if they were all a single institution. Similarly, we might represent

a long-term trade agreement between a fuel cycle region and acustomer region via a time-

varying mutual affinity that is set appropriately high throughout the duration of the agreement.

Much of the content of the following results chapter involves demonstrating the GENIUSv2

R-I-F matching capabilities.

4.3.2 Feasibility and fungibility

With appropriate arc costs in place, two final concerns remain for modeling the network

for some commoditym. The first is that supply of commoditym may outstrip demand, or

vice versa. As I mentioned above, such is very likely to be thecase for each commodity at

each time step in realistic problems, so we must take measures to eliminate this fundamental

source of infeasibility. Fortunately, a standard approachexists; we add an artificial source

or sink to each network that provides the necessary supply ordemand to guarantee that the

divergences sum to zero. Flow on the artificial arcs (to whichwe assign appropriately high

costs to prevent their being used except when necessary) areignored when the manager and

solver wrapper translate the NFP solution into a set of instructions; however, because these

artificial flows effectively measure unmet demand or unused supply, these values will likely be

a useful metric for assessing a given fuel cycle design. The addition of these artificial arcs and
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nodes completes our schematic picture of the network GENIUSconstructs at each time step

for each commodity. This schematic is shown in Figure 4.3.

Figure 4.3 Schematic of single-commodity network for GENIUSv2 material routing. Inexpen-
sive arcs connect facilities with a higher affinity for trade.Expensive arcs connect
real facilities to artificial ones and are added to guarantee problem feasibility. Image
adapted from Oliver et al. (2009).

We deal with flows of infungible material like enriched uranium by letting suppliers offer

services and customers order material. Thus, an enricher makes an offer based on its available

capacity (in tons-SWU) and a fabricator makes a request basedon the exact enrichment and

total mass it requires to construct a given fuel recipe. The manager then converts that request

into a matchable quantity in tons-SWU by calculating how muchenrichment capacity would

be required to produce the requested material. Now the source and sink divergences have the

same units and can be matched in the given way. Similarly, a separations plant makes an offer

of how much total mass of some recycled fuel material it will be able to provide (separated

mixed oxides, say). The fuel fabricator orders that commodity according to an exact recipe,

which the manager converts to a total mass and matches on thatbasis (see Section 4.4 below).

If, as in the case of fuel orders, we do not want requests for infungible materials to be spread

across two different suppliers, we can manually check the NFP solution and refile any orders

that were split, printing a warning when this less-than-ideal situation occurs. We discuss a few

more satisfying approaches to this formulation problem in Chapter 6’s outline of important

future work.
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4.3.3 Flows to the repository

It’s perhaps appropriate that the final lingering challengewe address is the problem of

nuclear waste and how to get it to repositories. As I mentioned above, the repository class is

unique in that each non-repository in the fuel cycle may (in theory) wish to send material there.

In fact, each may (again, in theory) wish to send multiple commodities there. Thus, the arcs that

connect those facilities to repositories appear to violateour separability assumptions, as does

the notion that the repository (modeled as a sink node with a single negative divergence) can

accommodate multiple commodities. We can easily define thisproblem away for once-through

scenarios with mass-limited repositories; simply treat all waste forms as a single commodity

(call it waste), and let the repository request a mass of waste each month that does not exceed

its remaining capacity. We can generalize this scheme to length-based repositories using a

mass-to-length conversion similar to Radel’s (2007).

Closed fuel cycles present a bigger challenge; we can’t homogenize waste as above if two

different facilities (repositories and separations plants) are interested in some types of waste

(used fuel) but not all types. Moreover, it’s unclear how we make the “competition” between

these two “customer” facilities fair and meaningful. Obviously, the case of the repository

strains our model a bit, and so we are forced again to assign a satisfactory treatment to the

future work queue. For now, the best we can do is name used fuelas a distinct commodity and

have separations plants request it and repositories request all other types of waste, including

any un-recyclable wastes that emerge from separations. In other words, we must temporarily

assume closed fuel cycles in which all waste thatcan berecycledis recycled. Careful and

creative thinking should yield a mechanism for commodifying and measuring waste in ways

that support modeling of the repositories via the “real-estate” assumption that forces waste

producers to compete for repository space and thus incentivizes reprocessing (see Radel (2007),

Grady (2008)).
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4.4 Recipe approximation problem

We transition now to another reprocessing-related modeling challenge, the so-called “win-

ery” issue that I renamed the recipe approximation problem (RAP) when I introduced it in

Section 2.2.1. Unlike the materials routing problem, the RAPis not unique to DF/DM codes,

but our discrete paradigm does raise some additional questions about how to solve it. These

were introduced in Section 3.1.4.2 and are related to the issues of fungibility that arise when

modeling continuous processes with discrete materials.

Whatever size is eventually deemed appropriate for the storage of the various streams of

reprocessed material at a separations plant, we will call each of these collections a “barrel.”

For our purposes in solving the RAP, the only necessary assumptions about them are that the

material within a barrel is homogeneous and that, while a fraction of the material in a bar-

rel can be removed for inclusion in a material order, the fractional isotopic composition of

that removed material must be fixed. In other words, no matterhow you slice it, the rela-

tive proportions of each isotope remains constant for each chunk or measure of the barrel’s

material that gets removed6. Any satisfactory treatment of the winery issue must eventually

satisfy this assumption—otherwise we model highly suspectchemical or physical extraction

of reprocessed stream constituents.

We begin to develop a form for solving the approximation problem as follows: LetB be

the number of barrels from which the plant may choose in approximating a recipe. At the time

of the order, letMbi be the mass of isotopei in barrelb. If we thought we could construct the

recipe exactly, we would need only choose the fraction,xb of each barrel to use such that the

aggregate material has massri of each isotopei in the recipe. Determiningx in that case would

simply require solving the matrix equation

Mx = r (4.8)

6To put it still another way, it’s as if the material in the barrel were a chemical compound; naturally, the
stoichiometry of the whole is the same as that of any sample you remove.
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However, there is noa priori reason to suspect that a unique solution exists, nor indeed that

any at all do. For instance, we know that no exact solution exists if there are any “impurities”

in all our barrels, that is, any isotopesi for which ri = 0 butMbi 6= 0, ∀b ∈ 1, . . . , B. Instead,

we allow an approximate recipeMx 6= r and we define the residual of the approximation:

Mx − r (4.9)

The smaller we can make the residual, the better the approximation of the original recipe.

Ferris, Mangasarian, and Wright (2008, p. 221-222) note thatwe can cast this problem of

minimizing theL1 norm of the residual (‖Mx − r‖1) as the following linear program7 by

adding dummy variables,y:

minx,y eT y

subject to y = |Mx − r|

0 ≤ xb ≤ 1, ∀b

(4.10)

wheree is a vector of ones with lengthB. The value of the objective function can be used to

evaluate the quality of the approximation with respect to the original recipe, and we can set a

lower bound on its value to prevent separations from delivering completely unsuitable material.

We can make several improvements to this selection scheme, some more practical than oth-

ers. The most obvious would be to use theL2 norm of the residual for the objective function.

This choice would give us the common “least-squares” approximation, which has the advan-

tage of more heavily penalizing larger deviations from the given recipe. It would be fairly

straightforward to do so using a statistics library; to solve the revised problem with optimiza-

tion software would require a library capable of solving quadratic programs.

However, one advantage of the LP approach in this context is that it allows us to weight

the contribution of each isotope to the objective function and to impose additional constraints.

These capabilities are useful in light of three obvious criticisms of Equation 4.10:

7In the unlikely case where an exact recipe exists, the objective function value will achieve its absolute mini-
mum of zero, so our approximation assumption does not preclude finding an exact solution to 4.8.
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1. There may be orders-of-magnitude differences in the masses of various isotopes called

for in the recipe and of isotopes not called for in the recipe but present in some or all

of the barrels. The form of the objective function in Equation 4.10 gives an isotopic

“matching incentive” that is in direct proportion to the specified mass of that isotope,

which isn’t really the weighting we desire. For instance, U-238 is almost always the

most abundant isotope in a recipe by more than a factor of ten.But neutronic importance

is not dependent on mass alone, and we actually care much moreabout matching the

(smaller) U-235 mass than the U-238 mass8.

2. While the formulation gives explicit incentive to match the mass of each individual iso-

tope, there is not necessarily any additional incentive forthetotal mass of the recipe and

of its approximation to match. We want to be careful not to alter the total mass of the

core significantly by providing fuel batch approximations whose total mass varies greatly

from the recipe’s.

3. The formulation does not account for the total neutronic effects of deviation from the

recipe. This is the most difficult aspect of the winery problem for any code and obviously

the most important one; any recipe approximation is worthless if a core made of the

resulting material wouldn’t perform properly in a reactor.

The first issue is the easiest to address; we simply normalizethe contribution of each iso-

tope to the objective function via a coefficient,ci formed from the inverse of the mass specified

in the recipe (see Equation 4.12). This penalizes mass deviation from the recipe in more ap-

propriate proportions and gives the algorithm more initialincentive to correctly match, say,

U-235 (a highly reactive species which in most recipes comprises some small percentage of

the total mass) as U-238 (the significantly less reactive majority component in most recipes).

For isotopes that appear in the candidate barrels butnot in the recipe,ri equals zero and so

we cannot divide by it. For now, our coefficient for weightingthe penalty for these isotopes is

8At least for thermal reactor fuel recipes.
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1/mr, wheremr is the total mass of the recipe. Thus, we now have

minx,y cT y

subject to y = |Mx − r|

0 ≤ xb ≤ 1, ∀b

(4.11)

where

ci =











1/ri if ri 6= 0

1/mr if ri = 0

(4.12)

Other choices are possible and may be more appropriate; the present choice merely allows

us to minimize our dependence on coefficients that do not havea straightforward physical

interpretation.

Next, we add additional constraints to check that the approximation is suitable from the per-

spective of both total mass and neutronic performance. A strict conservation of mass constraint

would be

mx = mr

wheremr is the total mass of the recipe,m is a row vector, and the componentmb is the mass of

barrelb. However, as we begin to add more constraints, we must worry about our inadvertently

making the LP infeasible9. Thus, we soften the constraint to

|mx − mr| ≤ ǫm (4.13)

whereǫm is some mass by which it is tolerable for the approximation’stotal mass to deviate

from the recipe’s. Within the code, we can set it as some set fraction (say, 2%) of the recipe

mass; we can even make that fraction an input parameter. The larger we setǫm (andǫw below),

the greater our chances of preserving a non-null subspace ofR
B from which to choose an

optimalx.

9Duality theory seemed beyond the scope of this treatment of linear programming. The more precise term
would beprimal infeasible
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We can attempt to preserve the overall neutronic behavior ofthe approximation in the same

way. Thus, we write another constraint

|wx − wr| ≤ ǫw (4.14)

wherew andwr are some neutronics-based weighting value (discussed below) calculated for

each barrel and for the recipe, respectively. Again,ǫw expresses some tolerable deviation in the

sum of the weights for the chosen approximation’s components from the weight of the recipe.

This gives us a final formulation of

minx,y cT y

subject to y = |Mx − r|

0 ≤ xb ≤ 1, ∀b

|mx − mr| ≤ ǫm

|wx − wr| ≤ ǫw

(4.15)

The latter constraint is problematic. It makes perfect sense to enforce conservation of

mass via Equation 4.13 because mass is an extrinsic property. However, neutronic properties

like cross-sections are intrinsic properties whose valuesdon’t change as you vary the size of

the sample, so it’s unclear how this weighted sum approach will work. We can observe this

problem formally by examining the definition of the neutron reproduction factor,η, which is

the weight we currently use forwr and for eachwb. This choice, which of course comes from

the four-factor formula for calculating the multiplication factor of an infinite and homogeneous

core, is an obvious and appealing place to start because it isthe primary measure of the fuel’s

contribution to the neutron economy and dependsonlyon the composition of the fuel—not the

core geometry or the composition of the moderator or coolant.

Unfortunately,η doesn’t fit very well into our formulation. To see why, first note that for an

I-isotope material, the neutron reproduction factor can be expressed according to the following
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equations:

η =

I
∑

i=1

νiσi
fn

i

I
∑

i=1

σi
an

i

=

I
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i=1

νiσi
fN

i/V

I
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i=1

σi
aN

i/V

=

I
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i=1

νiσi
fN

i

I
∑

i=1

σi
aN

i

(4.16)

whereσi
f , σi

a, νi, andni are the microscopic fission cross-section, the microscopicabsorption

cross-section, the number of neutrons created per fission, and the number density of isotopei.

To make the form suitable for GENIUS, which stores numbers ofatoms rather than number

densities, we can substituteni = N i/V , whereN i is the number of atoms of isotopei andV

is the material volume, which we don’t need to know because itcancels. Next, let’s expand

Equation 4.14 from its matrix form into a more explicit summation form:

|

B
∑

b=1

wbxb − wr| ≤ ǫw (4.17)

Ideally, if we could choose barrel fractionsxb such that the composition of the approximation

perfectly matched the recipe, then we would want the left-hand side of Equation 4.17 to equal

zero. Equivalently,
B
∑

b=1

wbxb = wr (4.18)

However, if we letw = η, defineN i,b as the number of atoms of isotopei in barrelb, and

substitute Equation 4.16 into Equation 4.18, we can see thatthis is not quite the case:

B
∑

b=1

(

I
∑

i=1

νiσi
fN

i,b

I
∑

i=1

σi
aN

i,b

)∣

∣

∣

∣

∣

b

xb 6=

I
∑

i=1

νiσi
f

B
∑

b=1

N i,bxb

I
∑

i=1

σi
a

B
∑

b=1

N i,bxb

(4.19)

In plain English, the neutron reproduction factor of the whole does not equal the weighted

sum of the neutron reproduction factors of the parts we buildit with. Again, we shouldn’t be

surprised by this; there’s no reason to expect the reproduction factor to behave like an extrinsic

quantity if the cross-sections that comprise its definitionaren’t extrinsic.

As a concrete illustration of how these constraints work together with the objective function

(and, in particular, of the adverse effects of the approximation of Equation 4.19), consider the
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following simple case. We wish to construct a recipe containing 100 tons of uranium enriched

to 4.5 w/o U-235 using two 100-ton barrels: one enriched to 3.5 w/o U-235 and one enriched

to 5.5 w/o. The target recipe has a reproduction factor ofηr = 1.23648, and the reproduction

factors of the candidate barrels areη1 = 1.13485 andη2 = 1.31540. By inspection, we know

that the correct answer to this problem is to use half of each barrel. However, if we fully

enforce both the neutronics and the total mass constraint, the solution we desire is not in the

feasible region because

(0.5)(1.13485) + (0.5)(1.31540) = 1.22512 6= 1.23648

In a sense, the formulation believes that the actual correctsolution (which achieves the abso-

lute minimum of the objective function value, zero, becauseeach isotope matches exactly) has

a reproduction factor that is too low, because the left-handside of Equation 4.19 underpre-

dicts the correct reproduction factor (which is given by theright-hand side of Equation 4.19).

The algorithm must work from the feasible set of choices for{x1, x2}, which includes only

those choices for which the total masses match and for which it believes (incorrectly) that the

reproduction factors match.

Table 4.2 shows what happens as we relax and then entirely disregard the neutronics con-

straint. As the allowable deviation between the calculatedηapprox and the givenηr gets larger,

the feasible region expands until it eventually includes the solution{x1 = 0.5, x2 = 0.5}.

The table shows that for this problem, that occurs whenǫw/ηr is somewhere between 0.5%

and 1%. The first two times times the neutronics constraint isrelaxed, the solver can include

more U-238 and less U-235, improving the objective functionwhile staying within the limits

of acceptable deviation from what it believes to be the desiredηapprox. The pattern of improve-

ment of course ceases once the feasible set includes{x1 = 0.5, x2 = 0.5}, since the objective

function cannot improve after that point.

Conversely, Table 4.3 shows what happens when we instead relax the total mass constraint.

In this case, we never expect to recover the correct answer because that answer remains infea-

sible as long asǫw = 0. But as we begin to allow approximations whose total mass deviates

somewhat from the total mass of the recipe, we again see that the solver identifies solutions
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Table 4.2 Effects of relaxing the neutronics constraint.
Total mass Neutronics Calculated Calculated Actual Enrichment
constraint? constraint? solution ηapprox ηapprox [w/o U-235]
Enforced: Enforced: x1 = 0.437103 1.23648 1.24748 0.0462579
ǫm = 0 ǫw = 0 x2 = 0.562897

Enforced: Enforced: x1 = 0.471344 1.23030 1.24154 0.0455731
ǫm = 0 ǫw = 0.005ηr x2 = 0.528656

Enforced: Enforced: x1 = 0.5 1.22512 1.23648 0.045
ǫm = 0 ǫw = 0.01ηr x2 = 0.5

Enforced: Not x1 = 0.5 1.22512 1.23648 0.045
ǫm = 0 enforced x2 = 0.5

that allow it to include less U-235 and more U-238, steadily improving the objective function.

Unfortunately, as the total mass constraint gets very loose, the objective function continues to

improve even as the approximation passes the desired enrichment. Thus, we come very close

to the correct enrichment atǫw/ηr = 1% but then continue into an underenriched regime as the

tolerance moves on toward 2%.

Table 4.3 Effects of relaxing the total mass constraint.
Total mass Neutronics Calculated Calculated Actual Enrichment
constraint? constraint? solution ηapprox ηapprox [w/o U-235]
Enforced: Enforced: x1 = 0.437103 1.23648 1.24748 0.0462579
ǫm = 0 ǫw = 0 x2 = 0.562897

Enforced: Enforced: x1 = 0.47353 1.23648 1.24157 0.0455765
ǫm = .005mr ǫw = 0 x2 = 0.53147

Enforced: Enforced: x1 = 0.509957 1.23648 1.23561 0.0449018
ǫm = .01mr ǫw = 0 x2 = 0.500043
Enforced: Enforced: x1 = 0.538137 1.23648 1.23097 0.0443845

ǫm = .02mr ǫw = 0 x2 = 0.475731
Not Enforced: x1 = 0.538137 1.23648 1.23097 0.0443845

enforced ǫw = 0 x2 = 0.475731

This “overshooting” occurs because the normalization strategy for choosing objective func-

tion coefficients,ci, favors matching the U-235 exactly (c235 = 1/4.5) over matching U-238

exactly (c238 = 1/95.5). Although in general we do care more about matching the massof U-

235 than the mass of U-238, in a two-isotope problem like thisone it’s really this singleratio
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of masses that we want to get right. However, the formulationdoes not encode this preference,

and so it takes advantage of the slack afforded by loosening the total mass constraint and en-

deavors to match U-235 exactly at the expense of the (less valuable) U-238 match. Figure 4.4

plots this behavior, decomposing the objective function value into the component contributions

from the U-235 and U-238 terms over a range of tolerances. Notice that the best enrichment

achieved (that is, the one that’s closest to the enrichment of the recipe) occurs when the contri-

butions of each term are closest to equal.
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Figure 4.4 Decomposition of the objective function value into its U-235 and U-238 contribu-
tions. Note that the algorithm favors U-235 matching because that isotope’s objec-
tive function coefficient is greater.

Although in the example above the approximations would be best served by removing

the neutronics constraint altogether, it’s not unreasonable to expect that using thisη-based

neutronic-weight constraint will improve the quality of some recipe approximations, since it

still carries first-order information about which isotopesare favorable from a reactivity per-

spective and which aren’t. We shall see in the results chapter that Equation 4.15 does do a ser-

viceable job in many cases. Again, this formulation can be thought of in a sense as placeholder

functionality that allows us to begin to model closed fuel cycleswithoutmodeling non-physical
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extraction from a single homogenized collection of reprocessed material. The approach can be

refined and made more rigorous from a reactor-physics perspective via subsequent research

projects, or it can be replaced entirely if necessary.

4.5 Summary

This chapter derived a series of single-commodity linear network flow programs to solve

the multi-commodity routing problem on a month-to-month basis. Drawbacks of and possible

future directions for this formulation were briefly discussed, the most important drawback

being the naive time horizon. The chapter also presented an approximation-theory based linear

program for solving the recipe approximation problem that governs the process of constructing

recycled fuel from reprocessed material. Here the most significant drawback is the less-than-

ideal form for the neutron weighting constraint. Chapter 5 will test and demonstrate the results

of these formulations and better inform future attempts to improve them.
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Chapter 5

Test problems and demonstration results

This chapter reports results from various testing and benchmarking problems designed to

demonstrate the capabilities in place in GENIUSv2. More rigorous and systematic testing and

the first realistic fuel cycle calculation for a real-world client are ongoing. The first major

tests run on GENIUS were (1) benchmark problems designed to check its total mass flow

results against VISION’s for a set of comparable reactor deployment scenarios and (2) a pair of

large multi-region scenarios designed to illustrate the R-I-F hierarchical matching methodology

described in Section 4.3.1. In this chapter, Sections 5.1.1and 5.1.2 report on these testing

and demonstration activities and are drawn, mostly verbatim, from the conference paper1 that

reported on them (Oliver et al., 2009). The remaining sections give new results not yet reported

elsewhere.

5.1 Once-through fuel cycle results

5.1.1 Comparisons with VISION

Because VISION has emerged as the standard tool for performing fuel cycle systems analy-

sis calculations, the following benchmarking problems compare GENIUS and VISION results

for a series of analogous test problems of increasing complexity. Throughout the discussion

it will be important to remember thatanalogousis the operative word. At a certain level of

1Many thanks to my coauthors on that paper for their suggestions and feedback, and in particular to CNERG’s
VISION expert Tae Wook Ahn, who ran the problems on the VISIONside in addition to helping me identify
appropriate fuel cycle parameters (see Table 5.1) and the form for Equations 5.1 and 5.2. Thanks also to Katy
Huff for her help with GENIUSv2 recipe management.
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granularity, fleet-based, continuous-flow codes and DF/DM codes are simply incompatible.

However, the overall behavior, including integrated material throughputs, of each model’s ap-

proximation of any given scenario should give nearly to the same answers. Note that each

problem was run with VISION’s radioactive decay routines turned off, since the analogous

routines in GENIUS are still being tested and debugged.

Problem 1 is a single-reactor benchmark with no fuel fabrication constraints2, and its pur-

pose is to compare accumulated spent fuel mass and isotopicsin GENIUS and VISION. The

parameters for this simulation and the three that follow it are given in Table 5.1 and represent

a combination of parameters that in our experience tend to work well in the VISION model.

Table 5.1 Parameters for VISION-GENIUS benchmark problems.
Parameter Value
Start year 2000
End year 2099
Construction + license time6 years
Operating time,OT 60 years
Power capacity,P 1050 MWe
Capacity factor,CF 0.90
Thermal efficiency,η 0.34
Cycle time,T 12 months
Fuel burnup,Bu 51 GWd/tHM
Fuel batches per core,N 5

Comparing GENIUS and VISION results requires first devising amethod to ensure that

their reactors’ fresh and spent fuel isotopics are comparable. To accomplish this task, one must

reconcile the different means by which each code accounts for material. VISION stocks and

flows are each described by a total mass whose isotopic breakdown is stored as a set of mass

fractions, with each fraction corresponding to a particular isotope. The discrete materials in

GENIUS, on the other hand, store theabsolutenumber of atoms of each isotope, not the atom

or mass fraction. Thus, to construct a pair of GENIUS fuel recipes, first determine the fixed

2GENIUSv2 provides mechanisms for creating special unconstrained testing facilities that make offers ac-
cording to specified monthly capacities and execute the corresponding orders immediately upon matching. The
materials themselves get created out of thin air, so to speak. If one of these test facilities has its capacity to some
extremely large number, there is no risk of insufficient fuelbeing available.



86

core mass,M , corresponding to the material in a VISION reactor fleet representing a single

reactor. Next, multiplyM by the VISION mass fraction vectors that represent fresh andspent

fuel isotopics for a particular fuel type and burnup level. Finally, convert the corresponding

masses into numbers of atoms and load the resulting GENIUS-compatible recipes into the

code. The only difficulty in this procedure is dealing with isotopes that VISION does not track

individually. These VISION recipe constituents, which gettagged with the labelOTHER,

cannot be converted unambiguously into GENIUS recipe constituents; while they have a well

defined mass in VISION (their mass fraction times the total mass of the stock or flow), they

cannot have such in GENIUS because in GENIUS the mass of a constituent is stored implicitly

as the number of atoms times an appropriate atomic mass. Whilesome effort was made to

assign representative atomic masses to theOTHER components, the process introduced some

error (see below).

The GENIUS fresh and spent fuel isotopics for these problemsare based on the mass frac-

tions from a standard VISION LWR fuel recipe through interpolation for 51GWd
tHM

of burnup. To

obtainM , first note that VISION calculates a continuous fuel consumption rate by quarter-year

time step according to Equation 5.1:

ṁ =
P (CF )

η(Bu)
(5.1)

This amount of mass, which constitutes1
N

th of the total core, emerges from the reactor during

the cycle period,T , so the total core mass for a GENIUSv2 reactor using this recipe is

M = ṁNT =
PNT (CF )

η(Bu)
= 99.459

tHM

core
(5.2)

In Problem 1, reactor construction and licensing start in 2000, and once the reactor begins

operating it runs for its designated operating time before being decommissioned. We can do a

simple hand calculation to compute the total mass ejected from a reactor for an idealized real-

world refueling scheme: At startup,N batches are inserted (total massM ). During each normal

year of operation one batch is inserted and one ejected (batch massM
N

). In the decommissioning

year, allN batches currently in the core are ejected (total massM ). Thus, the total ejected
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mass,Mej, should be (neglectingmc2 losses):

Mej =
M

N
(OT − 1) + M = 1.273 ktHM (5.3)

Table 5.2 shows the results of the hand calculation and the error in the two simulations with

respect to that prediction, and Figure 5.1 shows the codes’ behavior as a function of time. The

GENIUS underestimate for the total is due to a conservation of mass violation in our procedure

for reproducing the appropriate amounts ofOTHER isotopes from the VISION discharge

isotopic recipe. The VISION overestimate may result from its particular implementation of

modeling a discrete process like refueling in a continuous manner, although note also that an

extra offloading of one batch (massM/N = 19.9 tons) would approximately account for the

difference. Overall, though, this analysis suggests that VISION is a suitable reference against

which to compare GENIUS and indicates the magnitude of discrepancy that can be expected

in comparing more complex scenarios.

Table 5.2 Comparison of total spent fuel mass calculations for single reactor.
Calculation method Total ejected Relative error

fuel mass [ktHM]
Hand calculation 1.273 –
VISION simulation 1.293 +1.57%
GENIUS simulation 1.267 -0.47%

This reasonable agreement extends to the isotopic level. Figure 5.2 plots results for the dis-

charge isotopics of the five largest actinide streams in bothsimulations. The end-of-simulation

discrepancies are of the same magnitude as when we compare total masses; the differences in

the GENIUS results with respect to the VISION results fall between 1.81% and 2.05% (see

first column of Table 5.3 below).

To ensure that these results scale appropriately, for Problem 2 we repeated the same test but

with ten such reactors. Because these reactors were identical to the first one and all begin oper-

ating at the same time as in the single case, we expected and observed magnitudes exactly ten

times greater than in the single reactor case and with the same end-of-simulation discrepancies.
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Figure 5.1 Integrated total mass flow from the single reactor in Problem 1.Because GENIUS
is a discrete-flow code, it handles reactor startup and decommissioning in a straight-
forward way. Image and caption from Oliver et al. (2009).
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Figure 5.2 Integrated mass flow from the single reactor in Problem 1, for the five largest ac-
tinide streams (note semi-log scale). The end-of-simulation errors in the GENIUS
results with respect to the VISION results for each element are given in the first
column of Table 5.3. Image and caption from Oliver et al. (2009).



89

Problems 3 and 4 complicate the facility deployment by specifying growth curves. As men-

tioned earlier, GENIUSv2 requires a user-driven facility deployment in order to avoid using a

deployment heuristic. Of course, calculating a reactor deployment to meet an arbitrary de-

mand curve is a fairly trivial problem, so that capability has been written into the GENIUSv2

pre-processor. Thus, Problem 3 is a stepwise-linear growthcase where the simulation starts

building reactors in 2000 and increases the total capacity by one reactor each year (requiring

two new reactors per year starting in 2067 to account for one retirement per year during those

final 34 years).

The mass flow results for this problem are shown in Figure 5.3 (with isotopic breakdowns

again in Table 5.3), and they once again show good agreement.Notice that that the VISION-

GENIUS discrepancy shrinks measurably and that this time GENIUS gives a larger result.

Careful examination of Figure 5.1 suggests an explanation. Because of the differences in how

they handle startup and decommissioning, the time-integrated ejected mass values for GENIUS

reactors are higher than for VISION during most of the reactor’s lifetime (because VISION

only ejects half a batch’s worth of fuel in the first year) but are lower than for VISION once

decommissioning is complete (because VISION reactors consume more total lifetime fuel than

their GENIUS counterparts, as seen in Table 5.2). Thus, someof the error cancels. And because

94 of the 128 total reactors built during the simulation havenot yet been decommissioned in

2100, the VISION fleet lags behind the GENIUS fleet in terms of fuel mass ejected so far,

even though in the end each of the VISION reactors will have used slightly more fuel than the

GENIUS reactors.

Problem 4, the final VISION-GENIUS benchmark problem, is forexponential growth in

electricity demand. The initial demand is 10 GWe and the demand growth rate is 2% per

year. The simulation includes ten “legacy” reactors that exist when the simulation starts. They

retire, one per year, starting in 2029. The mass flow results for the VISION and GENIUS

simulations of this deployment are given in Figure 5.4. HereGENIUS returns a lower total

mass than VISION; as noted in Problem 3, the higher the percentage of total reactors that

reach decommissioning by the end of the simulation, the morelikely VISION is to compute
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Figure 5.3 Integrated total mass flow from the reactor fleet in Problem 3. The end-of-
simulation errors in the GENIUS results with respect to the VISION results for
total mass and the five main actinide streams are given in the third column of Table
5.3. Image and caption from Oliver et al. (2009).

larger mass flows than GENIUS. In Problem 4, 31.7% of the reactors get decommissioned,

as opposed to only 26.6% in the previous problem, so it’s not very surprising that GENIUS

returns to computing a lower total mass output than VISION. Finally, note that the isotopic

discrepancies with respect to the VISION case are given in the final column of Table 5.3 and

once again show reasonable agreement at that level of detailas well.

Table 5.3 Summary of isotopics results for benchmark problems.
GENIUS error w/r/t VISION

Material stream 1 2 3 4
Total mass -2.00% -2.00% 0.32% -0.53%
Uranium -1.93% -1.93% 0.38% -0.47%
Plutonium -2.05% -2.05% 0.27% -0.58%
Neptunium -1.89% -1.89% 0.43% -0.43%
Americium -1.91% -1.91% 0.40% -0.45%
Curium -1.81% -1.81% 0.51% -0.34%
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Figure 5.4 Integrated total mass flow from the reactor fleet in Problem 4. The end-of-
simulation errors in the GENIUS results with respect to the VISION results for total
mass and the five main actinide streams are given in the fourthcolumn of Table 5.3.
Image and caption from Oliver et al. (2009).

5.1.2 Rule-based fabrication matching in three-region problem

Problems 5 and 6 are two once-through problems that demonstrate GENIUSv2’s ability

to be scaled up to larger scenarios and that point to the richness and flexibility of the R-I-

F model and the formulations for solving the MRP. The facilitydeployment for Problems 5

and 6 is given in Table 5.4. Both of the reactor regions containthree institutions: a small

and a large fuel fabricator and reactor operator building either PWRs or PHWRs to match a

linear demand curve. The third region contains only a large fabricator with facilities for both

LWR and PHWR fuel. The parameters for both types of reactors aregiven in Table 5.5. The

precise fuel fabrication capacities were chosen to match reactor batch sizes in order to avoid

the unrealistic scenario of splitting a fuel batch order between two different fabricators. Future

work will explore optimization techniques to relax this constraint in a way consistent with the

network flow model. Note that this is a fairly large problem. It calls for construction of 748

total reactors (compared to 130 in Problem 3, the largest of our VISION benchmark problems)

and records 43,521 individual material transfers (9,612 inProblem 3).
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Table 5.4 Facility deployment for three-region fuel fabrication matching problem.
Region Institution Facilities

1 1 1 PWR in Jan. 1970
Linear growth: 1.71 GWe/year

2 1 LWR Fuel Fab (78.66 tHM/month)
3 1 LWR Fuel Fab (157.3 tHM/month)

2 4 1 PHWR in Jan. 1970
Linear growth: 675 MWe/year

5 1 PHWR Fuel Fab (333.7 tHM/month)
6 1 PHWR Fuel Fab (667.3 tHM/month)

3 7 1 LWR Fuel Fab (157.3 tHM/month)
1 PHWR Fuel Fab (667.3 tHM/month)

Table 5.5 Parameters for three-region fuel fabrication matching problem.
Value

Parameter PWR PHWR
Start year 1970
End year 2099
Construction + license time 5 years
Operating time,OT 50 years
Capacity factor,CF 0.90
Power capacity,P [MWe] 1000 600
Thermal efficiency,η 0.33 0.30
Cycle time,T [months] 18 12
Fuel burnup,Bu [GWd/tHM] 45 7
Fuel batches per core,N 4 1

In Problem 5, the GENIUS matching algorithm solves the MRP according to the default

affinities described in Section 4.3.1. Problem 6 alters the default behavior by specifying two

rules: Institutions 1 and 4 (the reactor operators) get preferentially matched with Institution

7 (the extra-regional fuel fabricator) as if they were all the same institution. This affinity

assignment could represent any number of modeling decisions, including to simulate a long-

term contract between Institutions 1 and 7 and 4 and 7; to signify that all three are, in fact,

owned by the same company; or to capture some price advantagebenefiting Institution 7.

Figure 5.5 (PWRs) and Figure 5.6 (PHWRs) show results for the cumulative travel of fabricated

fuel from the various suppliers to the reactor fleets in the two different problems. The top of
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each figure shows the default behavior; the extra-regional fabricator is the supplier-of-last-

resort and is only purchased from consistently when the order density is high enough that the

fabricators in the reactor regions are always working at capacity. Conversely, the bottom plot

of each figure shows that the foreign fabricator is now preferred.
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Figure 5.5 Change in matching of PWR fuel fabricators to reactors placing orders. When the
reactor operator’s affinity for trade with Institution 7 is increased sufficiently, it
becomes the favored supplier even though it’s located in another region. Image and
caption from Oliver et al. (2009).
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Figure 5.6 Same as Figure 5.5, except for the PHWR region’s fleet. Note again the substantially
different material routing based on one change to the input file. Image and caption
from Oliver et al. (2009).
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5.1.3 Rule-based unenriched uranium matching in four-region problem

Problems 7 and 8 present a similar scenario with a somewhat expanded scope to further

demonstrate the kinds of modeling and analysis GENIUSv2 is capable of. These problems

simulate the entire front end of the fuel cycle with facilities that have large capacities but are

constrained by material availability and process times in the usual, realistic ways3 described in

Chapter 3. Thus, we can examine scenarios where the availability—or, more accurately, the

source—of raw materials is the object of study.

Table 5.6 shows the facility deployment of this scenario, and the other simulation param-

eters used are the same as in Problems 5 and 6. There are two modeling decisions of special

interest here. First, note that Regions 2 and 3 are home to future reactors but no fuel cycle

facilities; these regions are meant to represent a small- and a medium-sized fuel “user state”

dependent for their fuel on a “supplier state,” Region 1 (recall Figure 2.1). One serious ques-

tion these user states might ask is how the global uranium market will affect the prices they

will have to pay their supplier for fabricated fuel. In fact,this is an interesting scenario even if

the users have negotiated some guaranteed price, because then increased material costs would

have to be absorbed in the fuel supplier state, possibly being passed on to rate-payers served

by the domestic reactor fleet that also depends on Region 1’s fuel service providers.

Table 5.6 Facility deployment for four-region unenriched uranium matching problem.
Region Institution Facilities

1 1 1 PWR in Jan. 1970
Linear growth: 1.71 GWe/year

2 1 Mine/Mill, 1 Conversion
3 1 Enrichment, 1 Fuel Fab

2 4 1 PWR in Dec. 2019
Linear growth: 0.81 GWe/year

3 5 1 PWR in Dec. 2019
Linear growth: 1.71 GWe/year

4 6 1 Mine/Mill, 1 Conversion

3In other words, there are none of the special “testing” facilities that were deployed to supply fuel to the
reactors in Problems 1–6.
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The second notable aspect of this scenario is that it simulates the effects of the kind of

price shock that could impact this user/supplier fuel service arrangement. It does so via a

mechanism based loosely on the current U.S. situation: First, we model mining and conversion

capacity within the fuel supplier regionand in some foreign region (Region 4). Second, we

set up a rule that creates affinities for trade favoring the inexpensive foreign supplier over

the pricier domestic supplier, akin to how the U.S. currently chooses to purchase uranium

from Russia rather than mining its own4. Third, we abruptly change this uranium-trade status

quo by perturbing the affinities appropriately. Thus, even though GENIUS does not currently

incorporate economic modeling to effect the resulting change in material routing via arc costs

drawn from real-world price changes, it can still create approximations to the behavior that

would result using its extremely simple affinity-based model.

Problem 7, accomplishes the proper “affinity management” via a single rule: we set the

affinity for trade of unenriched uranium hexafluoride from Region 4 to Region 1 at 6.0, effective

from the beginning of the simulation until some set expiration date,d (see Table 5.7). Recall

from Table 4.1 that the default affinity for inter-institution trade within a single region is 5.0.

Thus, early on in the simulation, whenever Institution 3’s enrichment plant orders feed material,

the manager solves a network flow problem in which the arcs that connects the enrichment plant

orders to Institution 2’s conversion plant have a higher cost than the ones connecting them to

Institution 6’s conversion plant. Thus, until this rule expires, the foreign supplier provides all

the uranium for Region 1’s fuel cycle activities. After it expires, the default inter-region affinity

of 2.0 raises the cost on the previously cheaper arc and it is no longer selected. Note that this

all-or-nothing behavior takes place because both regions have sufficient capacity to supply fuel

to all the reactors in the simulation. If the capacities werelower, we would sometimes have

observed the supplier-of-last-resort behavior of Problems 5 and 6.

4Of course, Russia sends us uranium downblended from highly enriched weapons stockpiles, not material
that has been freshly mined, milled, and converted to UF6. Although GENIUSv2 enrichment plants could be
programmed to downblend when necessary and then model the current arrangement by initializing the foreign
enrichment plant with a large stockpile of highly enriched material, it would be a fair amount of work to implement
these capabilities for such an unusual and specialized circumstance. Pretending the uranium is freshly mined
doesn’t affect the nature of the material exchanges betweenthe two regions and is thus an adequate approach for
an idealized demonstration problem.
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Problem 8 incorporates two more finely tuned rules in order tosimulate something like an

even market situation when the initial rule expires. There are several ways to accomplish this;

the chosen approach is shown in Table 5.7. Here, the rule thatexpires during the simulation is

equivalent to saying that Regions 4 and 1 are the same, at leastfor the purposes of unenriched

uranium trade. But this would set a level playing field right away. To prevent matching of the

domestic uranium supplier to the domestic fuel service provider, welower the affinity between

Institutions 2 and 3. By lowering it to the default inter-region affinity of 2.0, the arcs connecting

the domestic enricher to both the foreign and domestic supplier have the same cost when the

first rule expires. The result is “foreign supplier only” behavior until the Rule 1 expiration date,

followed by some sharing of orders after that time.

Table 5.7 Summary of matching rules used for Problems 7 and 8.
Problem Rule From To Commodity Affinity tstart tend

7 1 Region 4 Region 1 uUF6 6.0 0 d
8 1 Region 4 Region 1 uUF6 5.0 0 d

2 Inst 2 Inst 3 uUF6 2.0 0 1560

Figure 5.7 plots the relevant mass flows in Problem 7 for threedifferent cases representing

three different values ofd (Rule 1 expires at the beginning of 2010, 2020, and 2040, respec-

tively). The lowermost area represents the cumulative supply from Region 4 in all three cases;

the adjacent area above represents the portion that is provided by Region 4 under the two later

expiration cases but not the early one (in which it is insteadprovided domestically); the next

layer is the portion provided domestically for both of the early expiration cases but not the

latest one; the uppermost area corresponds to the supply provided domestically in each case.

No uranium enters Region 1 from Region 4 in Problem 7 after Rule 1 expires.

Figure 5.8 uses the same plotting convention to show the datafor Problem 8, subject to the

same three different expiration dates for Rule 1. Note in thiscase that material continues to

be transferred between Regions 4 and 1 after timed, but a significant portion of the necessary

uranium starts to be supplied domestically at that time. By the end of the simulation, be-

tween 32.8% and 38.9% of the total mass has come from the domestic source, with the largest
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Figure 5.7 Sources of unenriched uranium for domestic enricher and fabricator providing fuel
for the PWRs in Problem 7. A rule favors the foreign supplier until its expiration
date, at which point the default affinities favor the domesticsupplier. This figure
plots the three cases where the rule expires in 2010, 2020, and 2040, respectively.

amount obviously corresponding to the earliest expirationdate for whatever agreement caused

the foreign supplier to be advantageous.

How exactly the orders get distributed after timed is a fair question to ask, and the answer

is one that could incline us to change either the network formulation, the way the code passes

problems to the solver software, or the simple affinity mechanism, as development continues.

From an LP/NFP perspective, the problem isdegeneracy; multiple optimal solutions can and

often do exist. For instance, if each of theR requests can be filled by two different suppliers,

and if each supplier has enough capacity to fill all of them, and if all the arcs connecting the

suppliers to the requests have the same arc cost—all of whichconditions are true after time

d in Problem 8—then there are2R possible ways to match them. In fact, it seems to be just

a happy coincidence that orders get distributed between thetwo suppliers once the market is

even. For instance, the first plots in Figures 5.5 and 5.6 showthat in Problems 5 and 6 we were

not so lucky. The “even competition” between Institutions 2and 3 and between Institutions 5
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Figure 5.8 Sources of unenriched uranium for domestic enricher and fabricator providing fuel
for the PWRs in Problem 8. One rule favors the foreign supplier until its expiration
date, at which point only the second rule applies, setting the affinities even. This
figure plots the three cases where the first rule expires in 2010,2020, and 2040,
respectively.

and 6 did not result in their sharing orders. Instead, Institutions 2 and 5 were matched with

requests as long as they had the capacity and only in months when they were fully committed

did Institutions 3 and 6 receive any business, so to speak.

It seems very likely that the systematic way the solver wrapper constructs the mathematical

representation of each NFP—combined with the systematic way the solver itself iterates toward

a solution—causes the solver to return similar degenerate solutions each time. In the case of

Problems 5 and 6, those solutions consistently favored one fabricator over another. The same

is somewhat true in Problem 8. For each of the three expiration dates for Rule 1, Figure 5.9

plots the fraction of the sum of the uranium mass provided by the foreign supplier each year

(its yearly market share, so to speak). Although the fraction is not constant, it is always greater

than or equal to 0.5, suggesting a sort of artificial preference for the foreign supplier due to the



100

random but seemingly consistent identification of degenerate solutions that draw more uranium

from it despite the equal arc costs across the network.

It’s interesting but not especially surprising that the ratio does not change from onecase

to the other (note the overlapping data points in Figure 5.9). For a given monthm such that

m ≥ d, the NFP solved is almost exactly the same across the three cases—the same number of

offers (2) and requests (R) are filed by the same facilities, and the arcs that connect suppliers

to clients have the same cost associated with them. Only the quantity of available material

that each supplier has to offer (i.e., the divergence of eachsource node) depends on what has

happened in previous months. Of course, the danger in makingobservations like these is that

the solution behavior under degeneracy is likely very algorithm- and library-dependent; one

certainly wouldn’t want to get in the habit of depending on ortrying to predict it.
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Figure 5.9 Yearly foreign supply over total supply in Problem 8. This fraction is unpredictable
because after the Rule 1 expiration date,d, there are2R degenerate optimal solutions
for the NFP that matches theR uranium requests each month to one of the two
suppliers, and we do not know which solution the solver will find.

What to do about degeneracy should depend on careful thought about why (and even if) it

truly poses a modeling problem, especially in the long term.We could of course devise methods

for removing the degeneracy itself or the effects of the solver’s apparent tendency to return
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similar degenerate solutions for similar problems. For instance, as long as GENIUS solves the

NFP with LP technology anyway, additional constraints could encourage the manager to better

balance the load in cases with many equal-cost arcs. We couldalso probably randomize the

order in which we translate the list of offers and requests into the mathematical representation

of the problem. Or, if the effects of that measure didn’t makeit past the solver’s pre-processor,

we could randomly perturb the cost of each arc by some small but detectable random number.

However, this last strategy hints at a point that may encourage us to simply ignore degen-

eracy for now: once the code moves beyond a purely affinity-based arc-costing scheme, it’s

likely that most of the problematic degeneracy will just disappear. For example, if distance be-

tween supplier and customer were ever to be made even a small part of the calculation GENIUS

performs to assign arc costs, most of those costs would immediately become unique, thus elim-

inating much of the degeneracy without any artificial or constraint-increasing intervention. It’s

reasonable to assume that any sophisticated arc-costing schemes will avoid assigning identical

costs to very many different arcs.

5.2 Closed fuel cycle results

5.2.1 Recipe approximation unit tests

This section briefly describes the simple unit tests that anyform for the recipe approxima-

tion problem should certainly pass. Of course, the ability to pass these tests does not guarantee

success on more realistic problems, and in fact for more realistic problems it’s not often en-

tirely clear what the correct answer is. In a sense, then, theadvantage of starting with the tests

below is that they serve as a mechanism for screening out approaches that have little hope of

being useful (beforethose approaches make it to problems on which it’s hard to evaluate their

effectiveness). For the tests that follow, the valuesǫw = 0 andǫm = 0.01mr were chosen due

to their relative success in the illustration case from the end of Chapter 4, which is reproduced

as Test 6 below.

To test the mass-matching functionality apart from the neutronics considerations that com-

plicate matters so significantly, Tests 1-4 involve only non-fissionable isotopes. Thus,wr = 0



102

andwb = 0,∀b = 1, . . . , B and so the neutron weight constraint (Equation 4.14) is trivially

satisfied. Tests 1-4 are various perturbations on approximating heavy water (D2O) recipes

given candidate barrels of varying usefulness. In Test 1, the algorithm is asked to construct

1 Mmol of D2O from a barrel containing 1 Mmol of D2O and another containing 1 Mmol of

light water (H2O). Obviously, we expect the LP solution to tell us to use all of one and none

of the other. Test 2 doubles the recipe (2 Mmol D2O) and adds a third barrel, a duplicate of

the match from Test 1; we now want the solution to include bothD2O barrels. Test 3 uses the

same candidates but reduces the target recipe by 25% (to 1.5 Mmol D2O). Of course, this test

has a family of degenerate optimal solutions, and we merely require that the solution returned

belongs to that family. Finally, Test 4 must approximate Test 1’s target recipe using Test 2’s

candidates. However, to each of the D2O barrels we’ve added different amounts of an impurity,

“dissolved” helium. The solver should choose the barrel with the least of that impurity. Table

5.8 summarizes Tests 1-4 and establishes the notation used for the remainder of this section.

Table 5.8 Problem definition and results for Tests 1-4: Recipe approximation with non-
fissionable components.

Test Target recipe Candidate barrels Desired Result
[Mmol] [Mmol] solution

1 [H-1, H-2, O-16] 1 : [2, 0, 1] x1 = 0 x1 = 0
= [0, 2, 1] 2 : [0, 2, 1] x2 = 1 x2 = 1

2 [H-1, H-2, O-16] 1 : [2, 0, 1] x1 = 0 x1 = 0
= [0, 4, 2] 2 : [0, 2, 1] x2 = 1 x2 = 1

3 : [0, 2, 1] x3 = 1 x3 = 1
3 [H-1, H-2, O-16] 1 : [2, 0, 1] x1 = 0 x1 = 0.0

= [0, 3, 1.5] 2 : [0, 2, 1] x2 + x3 = 1.5 x2 = 0.5
3 : [0, 2, 1] x3 = 1.0

4 [H-1, H-2, He-4, O-16] 1 : [2, 0, .00, 1] x1 = 0 x1 = 0
= [0, 2, 0, 1] 2 : [0, 2, .01, 1] x2 = 1 x2 = 1

3 : [0, 2, .02, 1] x3 = 0 x3 = 0

While these tests are useful for demonstration purposes and for confirming the basic func-

tionality of future formulations, in practice there willalwaysbe fissionable isotopes in the

recipes and candidate barrels. In Tests 5-7, then, the solver attempts to approximate a simple
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uranium oxide fuel recipe weighing 100 tHM and with a U-235 enrichment of 4.5 w/o. Be-

causeνiσi
f is nonzero for the isotopesi involved in these tests, the neutron weighting constraint

will affect them.

Test 5 is the loose equivalent of Test 1; the candidate barrels include one containing the

correct material and one that is under-enriched. The basic mass-matching constraints should

suffice to allow the solver to discern among the two barrels which is correct, but we include this

test to be sure that the neutron-weighting formulation doesnot interfere with this ability. Test

6 replaces Test 5’s correct barrel with an over-enriched onewith 5.5 w/o U-235. This test was

discussed for a number of different parameters at the end of Chapter 4; recall that the obvious

correct answer is to use half of each barrel. Table 5.9 shows that the formulation (withǫw = 0

andǫm = 0.01mr) does reasonably well on this problem, using roughly 2% moreof the under-

enriched barrel than it should. Unfortunately, this test points out one of the main drawbacks of

our formulation: the nature of the approximation inherent in the neutronic weight constraint is

that it often leads to approximations withsmaller reproduction factors than the target recipe.

If anything, the opposite would be preferable, so that the approximation has excess reactivity

with respect to the target and thus a better chance of being usable in a real reactor. In the case

of Test 6, the error inη is only -0.07%; however, that error increases for Test 7. In this final test,

we remove the U-235 from the over-enriched barrel (making itundesirable to use at all) and

add a third barrel containing plenty of pure Pu-239. An idealformulation in this case would

instruct us to use all of the barrel enriched to 3.5 w/o U-235 and to add enough of the Pu-239

to recover the original neutron reproduction factor5. In truth, the answer approximates that

qualitative behavior but again “under-produces” from the perspective of neutron regeneration,

this time with an error of -1.8% (a fairly large number given the scale at which deviations

from criticality matter). However, unlike in Test 6, where including the neutronic weighting

constraint erodes the quality of our approximation, Test 7 would have been worse off without

it, since no plutonium at all would be used in its absence.

5This amount can be calculated analytically or numerically;it comes to approximately 0.46 tons for this
problem.
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Table 5.9 Problem definition and results for Tests 5-7: Recipe approximation with fissionable
components.

Test Target recipe Candidate barrels Desired Result
[tons] [tons] solution

5 [U-235, U-238] 1 : [3.5, 96.5] x1 = 0 x1 = 0
= [4.5, 95.5] 2 : [4.5, 95.5] x2 = 1 x2 = 1

(η = 1.23648) (η = 1.23648)
6 [U-235, U-238] 1 : [3.5, 96.5] x1 = 0.5 x1 = 0.509957

= [4.5, 95.5] 2 : [5.5, 94.5] x2 = 0.5 x2 = 0.500043
(η = 1.23648) (η = 1.23561)

7 [U-235, U-238, Pu-239] 1 : [3.5, 96.5, 0.0] x1 = 1 x1 = 0.989637
= [4.5, 95.5, 0] 2 : [0.0, 94.5, 0.0] x2 = 0 x2 = 0

3 : [0.0, 0.0, 5.50] x2 = 0.0836327 x2 = 0.0615514
(η = 1.23648) (η = 1.21332)

Finally, we mention briefly two “pathological” tests upon which this method fails com-

pletely because of the intrinsic/extrinsic problem discussed in Section 4.4. Consider first what

would happen if we produced a test that had the same relationship to Test 5 as Test 2 did to

Test 1. If we double the target recipe and add a barrel identical to Test 5’s correct answer,

the method will fail; while the correct answer is to use both of the 100-ton barrels enriched to

the proper weight percentage of U-235, this choice leads to violation of the neutronic weight

constraint because the sum of the candidates’ neutron regeneration factors is twice the value of

that same factor for the target recipe. Thus, the solver willtell us that the problem is infeasible.

Conversely, we could provide several under-enriched (or even just natural) uranium barrels.

In this case, even though each provides insufficient neutronreproduction, from the standpoint

of our current neutron weight constraint, the sum of these barrels would have an (artificially)

adequate combinedη value. We can choose to help the separations plants avoid these situa-

tions by ensuring that they combine or divide barrels as necessary to maintain candidates that

are appropriately sized for the sizes of order the plants arelikely to receive. However, this

strategy could interfere with any modeling decisions aboutwhat the real-world size of a barrel

should be. In the absence of this technique, problems of thisnature currently require relaxing

or removing the neutronic weight constraint.
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The above shortcomings emphasize the point that more work isneeded in identifying im-

proved formulations for solving the general recipe approximation problem. However, this

methodology still represents a substantial improvement over non-physical methods that al-

low extraction of arbitrary isotopes from a large soup of recycled material. This claim can be

strengthened when GENIUSv2 incorporates a simplified burnup engine like that of Scopatz and

Schneider (2009), since such a tool would allow deviation from input recipes without introduc-

ing such egregious errors in allowable burnup and dischargeisotopics when large deviations do

occur. In sum, the above method is flawed but nevertheless preferable to the currently available

alternatives, at least from a long-term modeling perspective.

5.2.2 A simple recycling scenario

Finally, we turn our attention to studying recipe approximation in situ, via a scenario (Prob-

lem 9) that includes reprocessing. This activity is meant both to demonstrate GENIUSv2’s abil-

ity to simulate closed fuel cycles and as an opportunity to further explore and refine the RAP-

formulations. Problem 9 models a high-demand and high-growth region served by enriched

uranium oxide PWR reactors and a lower-demand, lower-growthregion served by mixed oxide

PWRs. For the latter, we choose a VISION MOX fuel recipe that contain uranium, neptunium,

and plutonium only and is suitable for thermal recycle scenarios. The facility deployment and

simulation parameters for this case are given in Tables 5.10and 5.11, respectively. The fuel

cycle facilities all have more than adequate monthly capacity to meet the needs of the reactor

fleets. To maximize the illustrative power of this example, we run it without decay, without

any lag between spent-fuel ejection and reprocessing, and without allowing the separations

plant to discriminate between spent UOX fuel and spent MOX fuel when procuring material to

reprocess.

Since Institution 8’s fuel fabrication plant produces MOX fuel, it sends requests for a com-

modity enumerated internally assepMox (for separated mixed oxides). Separations plants cur-

rently estimate their availability of this commodity when making offers for it by summing over

the material objects that were produced from appropriate streams of separated material. Which
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Table 5.10 Facility deployment simple thermal recycle scenario.
Region Institution Facilities

1 1 12 UOX PWRs in Jan. 2010
Linear growth: 850 MWe/year

2 1 UOX Fuel Fab
3 1 Separations
4 1 Mine/Mill
5 1 Conversion
6 1 Enrichment

2 7 3 MOX PWRs in Jan. 2010
Linear growth: 142 MWe/year

8 1 MOX Fuel Fab

Table 5.11 Parameters for simple thermal recycle scenario.
Value

Parameter UOX PWR MOX PWR
Start year 2010
End year 2109
Decay Turned off
Fuel cooling delay None
Separation plant requests All used fuel
Construction + license time 5 years
Operating time,OT 50 years
Capacity factor,CF 0.90
Power capacity,P [MWe] 1050 1050
Thermal efficiency,η 0.34 0.34
Cycle time,T [months] 12 12
Fuel burnup,Bu [GWd/tHM] 51 46
Fuel batches per core,N 5 5

of those streams is appropriate will depend on what kinds of MOX fuels it expects to be pro-

viding material for. Because for this scenario we know the separations plant will be providing

the material for U-Np-Pu MOX fuels only, we manually set the plant to use an implementation

of the VISION 2.2 base case’s UREX3 method6. This method separates the recycled fuel into

(among others) a uranium stream, a neptunium-plutonium stream, and a higher actinide stream,

the first two of which are the relevant ones for producingsepMox suitable for U-Np-Pu fuels.

6Thanks to CNERG’s Royal Elmore for his help implementing theseparations schemes in GENIUSv2.
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Just as we manually set the separations plant to use a processthat’s appropriate for even-

tually producing U-Np-Pu MOX, so too do we ensure that it onlyincludes suitable barrels

(from the uranium and neptunium-plutonium streams) when setting up a recipe approximation

problem to solve. These two choices are a subset of a larger problem that can be labelled

“separations tuning,” which is itself a subset of the overall “fuel-cycle tuning” issue introduced

in Chapter 3. Helping the separations plant figure out how to operate in a sensible way given

the recycled material it will likely be called upon to produce is a particularly important area

of future GENIUS modeling work and stands to significantly improve the quality of the recipe

approximations without having to change the formulation; if candidate barrels have been sepa-

rated according to a scheme that is tailored to specific recipe of interest, they will be identified

and used accordingly.

The scenario outlined above was repeated parametrically for many different combinations

of the tolerancesǫw and ǫm from the RAP formulation given in Equation 4.15. During the

simulation, the 27 MOX-fueled PWRs order a total of 929 batchesof fuel. The quality of

each of these approximations is plotted (in simulation order) in Figure 5.10 and summarized in

Table 5.12 for the subset of the (ǫw, ǫm) parameter space that best illustrates the trend toward

reasonably successful approximations. In this series, we set ǫm constant at 10% of the total

recipe mass and letǫw vary from 10% to 50% of the recipe’s reproduction factor before relax-

ing it completely. This scenario comes the closest to providing recipes with the appropriate

reproduction factor when the influence of theη-based neutron weight constraint is completely

removed. Given the underestimates ofη in Test 6 and 7 caused by the inexactness of Equation

4.19, this pattern is not especially surprising.

On the other hand, thevariability in Figure 5.10 is at first a little surprising, since in the

absence of decay all fuel arriving at separations has one of only two possible recipes. However,

if we think about the chief cause of this variability, we can understand both why it exists and

why it diminishes over time. The dominant causes here are
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Figure 5.10 Quality of recipe approximations in simple recycling scenario. Unlike in Test 7,
which required a neutronics-weight constraint in order to get close to the correct
answer, here including this constraint degrades the quality of the approximation.

• the high variability in the number of shipments both to and from separations when there

are few reactors in the system (which means the number and size of the candidate barrels

changes a lot from month to month at early times),
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Table 5.12 Statistics on deviation from desiredη and total mass for recipe approximations in
simple recycling scenario for various RAP neutron weighting tolerances.

ηrec − ηapprox mrec − mapprox

Tolerance Avg Min Max Avg Min Max
[%] [%] [%] [%] [%] [%]

10% 5.77 0.335 26.1 1.12 -1.25 10.0
20% 5.57 0.333 24.7 1.05 -1.26 9.67
50% 5.19 0.334 25.8 0.892 -1.26 9.42

No constraint 4.89 0.332 7.56 0.707 -1.27 1.44

• the “tuning” between the dominant discharge recipe and the recipe for fresh recycled

fuel, and

• the polluting effects of the “twice-burned” spent MOX fuel and the increasing probability

that separations will receive some of it in a given month in addition to spent UOX fuel.

The latter two items in the above list are best understood viaa side-by-side listing of the

composition of desired versus available material. Table 5.13 shows the mass fractions of each

isotope that we would like to have available from the barrelsformed from the uranium and

neptunium-plutonium streams (Column 3) as well as the mass fractions we actually get from

(separately) reprocessing spent UOX fuel (Column 4) and spent MOX fuel (Column 5). Notice

that the relative proportions within the two streams are closer to matching the desired values

for the spent UOX stream than for the spent MOX stream. Moreover, the neptunium-plutonium

stream from the spent UOX is a better fit than the uranium from spent UOX. These observations

about the quality of the different recycled streams seem to be true from a neutronics perspective

as well. The most important isotopes with respect to reactivity are U-235, Pu-239, and Pu-241,

so we expect that the approximations with the best neutronicproperties will be from when

barrels unpolluted by reprocessed MOX fuel are available.

Figure 5.11 helps us see the big picture with respect to the flow of recycled material in

this final scenario. By the end of the simulation, almost 5 ktHMof spent fuel have arrived at

reprocessing. Less than half of this amount ends up being sent back to fuel fabrication to be

burned in MOX reactors. The time axis on the out-going plot has been reversed for ease of
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Table 5.13 Composition of desired and available recycled material forconstructing MOX fuel.

Compositions [w/o]
Stream Isotope Desired for Available from Available from

fresh MOX spent UOX spent MOX
U-232 0 4.27e-9 7.06e-8
U-233 0 2.14e-8 1.23e-6

Uranium U-234 2.00e-2 4.35e-4 3.16e-2
U-235 0.822 0.756 0.517
U-236 0.613 0.599 0.608
U-238 98.5 98.6 98.8
Np-237 5.03 5.25 4.17
Pu-238 2.50 2.45 5.79

Neptunium- Pu-239 50.4 47.0 39.3
Plutonium Pu-240 23.9 23.8 27.2

Pu-241 11.2 14.1 14.1
Pu-242 6.99 7.37 9.48
Pu-244 0 2.45e-4 2.10e-4

comparison of the relative proportions of selected isotopes. The key observations here are as

follows: First, the relative proportionswithin each of the two streams remain fairly constant

and are the same entering the separations plant as leaving it. This observation reiterates the

point that the separations plant does not allowisotopicseparation, only elemental separation.

It also serves to remind us that, no matter how good the formulation for recipe approximation

is, it can only be as successful as the quality of the candidate material it has to work with.

Second, the relative proportionsbetweenthe two streams are not constant; cumulatively, the

approximation algorithm chooses to use proportionally less of the uranium stream than the

plutonium stream compared to what it has available. This is unsurprising in light of Table 5.13,

and it’s reassuring from a reactivity perspective because we expect the plutonium stream to be

closer than the uranium stream to having the specified neutronic properties.

5.3 Summary

This chapter reported results from a number of testing and demonstration problems for both

once-through and closed fuel cycles. Problems 1-4 showed that reactor fleets in GENIUSv2
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Figure 5.11 Mass flows by selected isotope both into and out of the separations plant in Prob-
lem 9. Note the different y-axis scales between the left- andright-hand images
and the reversing of the time axis for the material sentfrom separations to facili-
tate comparisons of the two flows’ compositions. The within-stream proportions
are roughly constant, but the between-stream proportions show the cumulative ef-
fect of the approximation scheme favoring the plutonium stream over the uranium
stream.

behave quite similarly to their VISION counterparts. Problems 5 and 6 demonstrated the code’s

affinity-based customer and supplier matching capabilities for fuel cycle services (fabrication),

and Problems 7 and 8 served an analogous role for matching of fuel cycle material supply

and demand (unenriched uranium). All of these matching problems demonstrate the somewhat

arbitrary and unpredictable routing effects caused by degeneracy in the NFP formulations, a

behavior expected to matter less and less as more subtle arc-costing schemes eliminate much

of the degeneracy.

Specific to closed fuel cycles, the recipe approximation formulations were subjected to unit

tests (Tests 1-7) and a full scenario featuring a thermal MOXrecycle (Problem 9). Together

tests 6 and 7 showed that a recipe approximation constraint on neutronics is necessary to obtain

the desired behavior in certain situations but can do more harm than good in others. Such

was indeed the case in Problem 9, where the best approximations were obtained by removing

the neutronics constraint altogether and allowing the algorithm to match purely on isotopic

and total mass. Results from these early recipe approximation studies show that much work

remains to be done, both in the formulation itself and in tuning separations plant operation to

ensure that formulation has suitable material to choose from.
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Chapter 6

Summary and future work

6.1 Summary

This thesis has reported on the state of GENIUSv2 at the pointin its development when

it had reached an important milestone: the ability to run large multi-region scenarios that in-

clude all of the basic nuclear fuel cycle steps, including reprocessing. The work this document

has described has helped lay the foundation for the goal of investigating the advanced-fuel-

cycle-related research questions discussed in Chapter 1. This work includes the design and

implementation of the discrete-facilities/discrete-materials fuel cycle model described in Sec-

tion 3.1, the simulation machinery and robust input-outputinfrastructure described throughout

the rest of Chapter 3, and—most importantly—Chapter 4’s preliminary methodology for using

optimization techniques to determine appropriate material routing instructions and recipe ap-

proximation choices. The fuel cycle modeling problems reported in Chapter 5 are intended to

demonstrate and characterize the current behavior of the code and to point out areas for future

improvement.

To our knowledge, GENIUSv2 is the first code to adapt linear and network flow program-

ming techniques for the purposes of global optimization of nuclear fuel cycles. The complexity

of the fuel cycle system—especially its many commodities, the infungibility of some of those

commodities, and the different purposes and modes of operation of each of the types of nuclear

fuel cycle facility—makes this a challenging task. At times, these challenges have required

the adoption of an air of pragmatism—most notably through the introduction of physical and

mathematical approximations—in order to arrive at a code that can produce meaningful results
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and to which more complex and sophisticated techniques can be added in the future. The naive

way GENIUS currently forms NFPs to solve the routing problemon a month-by-month basis

and the poor quality of the neutronic weighting constraint in the recipe approximation algo-

rithm are probably the two most notable examples, but there are others as well. Most of these

areas for future work were identified as they became relevant, but to close they are reviewed

briefly below.

6.2 Future work

6.2.1 Facility data and behavior

The task labelled fuel cycle “tuning” throughout this document is the most obvious and

probably straightforward opportunity for immediately improving the quality of GENIUSv2

modeling. In essence, this task involves identifying—through some combination of research

into industry practice and trial and error—appropriate kinds of facility behavior that benefit

the functioning of the fuel cycle as a whole (and parameters that quantify this behavior). For

instance, it’s clearly in no one’s best interest for facilities to order material only at the exact time

they “realize” they need it. But identifying appropriate mechanisms for forecasting supply and

demand and maintaining appropriately sized buffers of material will require careful thought,

especially because such decisions represent local heuristics that could interfere with the search

for globally optimal material routing strategies.

Another set of modeling difficulties related to facility behavior involves the issue of fuel

cycle commodities’ varying fungibility. Recall, for instance, the way that the source and size

of the material objects processed and stored in the separations plant determines both the size

of the LP GENIUS solves during recipe approximation and the variety of the “wine cellar”

from which it chooses appropriate materials for constructing recycled fuel. In Problem 9, that

variety caused great variability in the quality of the recipe approximations, an effect that should

be eliminated in the future.

Finally, developers may wish to begin examining possible methods for including more

explicit and detailed economic modeling in GENIUS, either as a post-processing step or as
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runtime functionality that can affect the flow of material and the status of facilities or their in-

stitutional owners. Past CNERG intern Arnaud Reveillere worked on early implementations of

the post-processing-based approach, and Jain and Wilson have proposed paradigms for treating

facilities’ cash flows and financial outlooks explicitly (2006). Obviously, allowing economic

considerations to affect the flow of material may require adjusting or replacing the network-

based MRP formulations currently in place.

6.2.2 Material routing problem

Most of the other future work called for by those formulations was discussed in Sections

4.2 and 4.3 and relates to the following four issues: discrete/continuous tension, degeneracy,

arc costing, and the time horizon. The first problem arises for those commodities where the

manager does not wish to “split” a customer’s request between two different suppliers as if

it were a continuous quantity. For instance, unlike in the case of yellowcake or unenriched

uranium, it’s hard to imagine a reactor ever wanting a batch of fuel it ordered to be provided by

two separate suppliers. Unfortunately, because fabricators make their offers with respect to the

amount of mass they’re able to process, requests for fuel batches are converted to an equivalent

mass as well, and there’s nothing to guarantee that all of themass selected to flow to the

sink representing that request will come from a single source node (fabricator). One promising

approach that would not cause the class of optimization problem to become significantly harder

would involve figuring out how to teach the fabricators to make reliable offers based on a

number of batches instead of a mass. If both the supply and demand for fabricated fuel batches

are expressed in terms ofintegerdivergences and constraints (like a number of batches), then

the solution would be guaranteed to include only integer flows as well, provided the code used

a true network solver1.
1This is a surprising and convenient property of linear network flow programs with integer constraints. See

Bertsekas (1998)
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The problems of degeneracy and arc costing are related; the greater the variation in the arc

costs of the network associated with a particular commodity, the fewer the number of degen-

erate optimal solutions. So it seems that the most expedientmeans of eliminating problematic

degeneracies is to increase the level of detail in the process of assigning arc costs. As more

real-world data is incorporated into in the model, mechanisms for choosing arc costs that bet-

ter represent the true competition in the system will likelypresent themselves. Of course, the

goal of identifying a form whose objective function explicitly minimizes the cost of producing

electricity (rather than simply the costs of matching as much supply to demand as possible)

may help determine whether exploring this arc-costing research question is worth the time and

effort.

Finally, it should be a high priority to identify a more appropriate (i.e., longer) time hori-

zon for solving the routing problem (in whatever form) and tomodifying the other aspects

of the code to accommodate this change, as necessary. The operations research and energy

economics literature will likely be of great help in doing so, as might some of the underly-

ing methodologies implemented in the MARKAL code and other more rigorous platforms for

modeling energy economics.

6.2.3 Recipe approximation problem

The two biggest concerns with the current RAP formulations are (1) the challenges posed

by expressing rigorous neutronics constraints in a form consistent with common linear pro-

gramming techniques and (2) operating the chemical separations schemes themselves in such

a way that the algorithm itself has appropriately composed candidate barrels to choose from.

Some of the pressure on both these tasks could be relieved with the incorporation of a simpli-

fied burnup engine such as the one developed by Scopatz and Schneider, since its use would at

least allow the code to capture the consequences of failing to provide a closely matched recipe.

In the case of the consistently under-reactive approximations in Problem 9, it would allow us

to calculate a (consequently smaller) maximum burnup for the recycled fuel, in addition to

correcting the subsequent miscalculation of the recycled fuel’s end-of-life isotopics (without
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this capability, error in the input recipe isotopics becomes even larger error in the output recipe

isotopics).

6.2.4 Fuel cycle design problem

Finally, we return (for completeness’ sake) to the questionof the fuel cycle design problem

as a whole. The decision to require that the exact facility deployment be specified as input

rather than being determined dynamically according to runtime heuristics serves as an impor-

tant example of the techniques that will be necessary in working toward the goal of making

GENIUS compatible with “wrapper-based” optimization techniques like simulated annealing,

genetic algorithms, etc. Of course, in addition to this workwithin the code, a very large area

of future GENIUS-related work will be to design the actual strategy for linking the code to ap-

propriate optimization software. A useful first step might be a literature review of the available

open-source choices; DAKOTA (Eldred et al., 2008), a robusttoolkit maintained at Sandia Na-

tional Laboratories for use on design optimization problems like this one, seems like a strong

contender. In any event, this work will be important to ensure that GENIUSv2 continue toward

its fourth and most challenging design principle: to be a generative tool for fuel cycle analysis

anddesign.
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Appendix A: Useful terms from object-oriented programming

A.1 Classes, objects, and inheritance

Inheritanceis a feature of object-oriented programming that allows forthe creation of in-

creasingly specializedobjects. A common illustration of inheritance is via the creation of

a taxonomy of classes representing living things (see Lippman, 1991; Oliver and Fatenejad,

2009). In object-oriented programming, aclassis the blueprint for creating individual objects

or instances, so a programmer who wants to model animals will first write ananimal class.

This class will define the state and behavior possible for animals in general. Next, he or she

can write specializedsubclassesthatderiveor inherit fromthe animal class. Instances of these

subclasses (say, an object representing a bear or a rabbit) then inherit the data and abilities of

the superclassfrom which they are derived—in addition to whatever bear- orrabbit-specific

data and abilities are defined in their respective classes.

A.2 Member data and methods

Member dataare declared in a class and store the state of its objects. Forinstance, the data

member representing the age of an animal will obviously be different for different instances

that are different ages. Similarly, themethodsor member functionsof a class determine each

object’s behavior. These functions are invoked on particular instances, likely changing their

state in some way. Member functions of a superclass can be either inherited oroverriddenby

its subclasses.

A.3 Static data and methods

Staticdata and methods are not associated with particular instantiations of a class but with

the class as a whole. For instance, if there were a limit on thepopulation of a particular animal

species, it might be enforced via static data that tracked the number of instantiations of that
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particular animal subclass and a static function that routinely checked that number and could

take appropriate action when it got too high.

A.4 Singletons

Described by Gamma et al. (1994), asingletonclass object is specifically designed to be

universally accessible to any object that knows about it, via a static function of the singleton

class. For this behavior to work, we must require that only one instance of the singleton class

is ever created.
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Appendix B: Input and output file tables

B.1 Input

Five tables are currently needed to form a valid GENIUSv2 input file: Regions, Insts,

Facs, FacParams, andRules. These tables, included in an SQLite database that gets passed

in to the code as a command-line argument, are described below.

Table B.1 Description ofRegions table input.
Column Data type Description
regID INTEGER A unique identifier for this region.

PRIMARY KEY
name TEXT A name for this region.
type TEXT An enumeration specifying whether this region operates

fuel cycle facilities other than reactors.
demand BLOB A specially formatted block of memory that

encodes the monthly electricity demand for this region.

Table B.2 Description ofInsts table input.
Column Data type Description
instID INTEGER A unique identifier for this institution.

PRIMARY KEY
regID INTEGER The identifier for the region where this institution is

located.
name TEXT A name for this institution.
build BLOB A specially formatted block of memory that

encodes this institution’s plan for building future
facilities.
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Table B.3 Description ofFacs table input.
Column Data type Description
facID INTEGER A unique identifier for this facility.

PRIMARY
KEY

instID INTEGER The identifier for the institution that owns this facility.
name TEXT A name for this facility.
yearStartOp INTEGER The year this facility started (or will start) operating.
monthStartOp INTEGER The month this facility started (or will start) operating.
constrTime INTEGER The number of months it takes (or took) to construct

this facility.
lifeTime INTEGER The number of months this facility will operate.
cycleTime INTEGER The number of months it takes to perform a cycle of

this facility’s characteristic operation.
status TEXT An enumeration specifying the operational status of

this facility at the beginning of the simulation (operating,
under construction, etc.).

capFactor FLOAT A typical capacity factor for this facility.
capacity FLOAT An appropriate measure of this facility’s capacity (units

vary).
type TEXT An enumeration specifying what kind of facility this is.
batchesPer- INTEGER The number of fuel batches this facility uses in its core,
Core if it is a reactor.
feed TEXT The commodity or commodities this facility uses as

feedstock(s).
prod TEXT The commodity or commodities this facility produces.
tailsFrac FLOAT The default tails fraction used by this facility, if it

performs enrichment.
oreWF FLOAT The weight fraction of uranium present in the yellow-

cake produced by this facility, if it is a mine.
freshRec INTEGER The recipe this facility uses for fresh fuel, if it is a

reactor.
spentRec INTEGER The recipe this facility produces as spent fuel, if it is a

reactor.
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Table B.4 Description ofFacParams table input.
Column Data type Description
ID INTEGER A unique identifier for this class of generic future

PRIMARY facilities.
KEY

type TEXT An enumeration specifying what kind of facility the
members of this generic future type are.

name TEXT A name for this generic facility type.
lifeTime INTEGER The number of months facilities of this type will operate.
constrTime INTEGER The number of months it takes to construct a facility of

this type.
cycleTime INTEGER The number of months it takes to perform a cycle of

this facility type’s characteristic operation.
charCF FLOAT A characteristic capacity factor for this generic facility

type.
capacity FLOAT An appropriate measure of this facility type’s capacity

(units vary).
batchesPer- INTEGER The number of fuel batches members of this facility use
Core in their cores, if they are reactors.
feed TEXT The commodity or commodities this facility type uses as

feedstock(s).
prod TEXT The commodity or commodities this facility type

produces.
tailsFrac FLOAT The default tails fraction used by this facility type, if it

performs enrichment.
oreWF FLOAT The weight fraction of uranium present in the yellow-

cake produced by this facility type, if it is a mine type.
freshRec INTEGER The recipe this facility type uses for fresh fuel, if it is a

reactor type.
spentRec INTEGER The recipe this facility type produces as spent fuel, if it is

a reactor type.
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Table B.5 Description ofRules table input.
Column Data type Description
fromType TEXT The actor type of the supplier (Region, Inst, or Fac)

involved in this rule.
fromID INTEGER The identifier of the supplier involved in this rule.
toType TEXT The actor type of the customer (Region, Inst, or Fac)

involved in this rule.
toID INTEGER The identifier of the customer involved in this rule.
commodity TEXT The commodity type this rule applies to.
affinity FLOAT The affinity for trade this rule describes.
timeStart INTEGER The time at which this rule begins to apply.
timeEnd INTEGER The time at which this rule ceases to apply.
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B.2 Output

Three tables currently have GENIUSv2 output written to themduring or at the end of the

simulation:Facs, MatFacHist, andMatIsoHist. Facs data is written as additional columns

in the table that already exists;MatFacHist and MatIsoHist are entirely new tables not

present in the original input file. This output is described below.

Table B.6 Description ofFacs table output.
Column Data type Description
startOp INTEGER The GENIUS time at which this facility began operating.
capLog BLOB A specially formatted block of memory that encodes the

monthly capacity factors this facility actually operated
with during the simulation.

Table B.7 Description ofMatFacHist table output.
Column Data type Description
matID INTEGER The unique identifier of the material object whose

transfer is stored in this record.
time INTEGER The time at which this material transfer occurred.
fromFac INTEGER The identifier of the facility that sent the material.
toFac INTEGER The identifier of the facility that received the material.
compID INTEGER The identifier of the composition of the material at the

time of the transfer.

Table B.8 Description ofMatIsoHist table output.
Column Data type Description
compID INTEGER The identifier of the material composition stored

PRIMARY KEY in this record.
time INTEGER The time at which this composition applied to some

material.
comp BLOB A specially formatted block of memory that encodes

the isotopic composition stored in this record.


