GENIUSV2: SOFTWARE DESIGN AND MATHEMATICAL FORMULATIONS FOR
MULTI-REGION DISCRETE NUCLEAR FUEL CYCLE SIMULATION AND
ANALYSIS

by

Kyle Matthew Oliver

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

(Nuclear Engineering and Engineering Physics)

at the

UNIVERSITY OF WISCONSIN-MADISON

2009

Advisor Approval Page

GENIUSV2: SOFTWARE DESIGN AND MATHEMATICAL FORMULATIONS FOR
MULTI-REGION DISCRETE NUCLEAR FUEL CYCLE SIMULATION AND
ANALYSIS

Kyle Matthew Oliver

APPROVED

Paul P H Wilson

Associate Professor of Engineering Physics

10 June 2009

To my parents, Chris and Joanne, for their quiet but sure lodesapport (the world has
enough cheerleaders, | agree); to my sister, Rachel, whbtauwgthe courage to make hard
decisions; and to my friend Carl, who | suspect will get sonugkes from the Philadelphia

concertgoers with the story of having a nuclear enginedhgegis dedicated to him.

ACKNOWLEDGMENTS

I've been at UW-Madison for seven years now, so I've got a fqgitemple to thank:

e My advisor Paul Wilson, who's been as good a mentor and freendny advisee could
hope for and who'’s been supportive through all my flailing-eg@nd bad, productive

and not-so-much. He also unleashed The Hacker Within.

e My other professors and teachers, especially Greg Mosdss Morradini, Doug Hen-
derson, Alex Nagel, Bob Meyer, Ben Liblit, Bob Witt, Rock Macki@m McGlamery,

Mike LeMahieu, Susan Hellstrom, and Steve Nathans.

e The other folks who kept me busy in grad school, especiallydgaourter, Christine
Nicometo, Mitchell Nathan, and David Meerman Scott. | cotldhave stayed sane

without you and am sorry for those occasions where | gave lyewpposite impression.

e My colleagues and friends in and around 414 ERB and CNERG/SAB|igeagally Ar-
naud Reveillere, Katy Huff, Royal Elmore, Kerry Haney, Tae Wddhn, Matt Terry,
Aditya Kumar Pidaparthy, Tracy Radel, Mike Priaulx, and Ryaady. Special thanks
to Milad Fatenejad, who got me through several crucial rtmaks and taught me how
to hack the source, and Ahmad Ibrahim, who absorbed endlesggess and has to be

the best officemate on campus.
e Chris Juchau and Mary Lou Dunzik-Gougar, who worked on GENIUS

e The Advanced Fuel Cycle Initiative at the U.S. Departmentredrigy’s Office of Nuclear
Energy, for funding my work. Special thanks to Mr. Carter “Budavage, Dr. James

Bresee, and Dr. Tom Ward for their guidance and feedback.

DISCARD THIS PAGE

TABLE OF CONTENTS
Page
ABSTRACT . . . Vi
1 Introductionandcontext 1
1.1 Advancednuclearfuelcycles 2
1.2 Theroleofsystemsanalysis 4
1.3 Thesisoverview 6
2 Literature review and motivation Lo 8
2.1 Fuelcyclesystemcodesurveys e e 8
2.1.1 Facility and materialmodeling 9
2.1.2 Regionalmodeling 10
2.1.3 Optimization capabilities 11
2.1.4 Software design and infrastructure 12
2.2 Specific limitations of VISION and GENIUSv1 13
2.2.1 VISION: A fleet-based, continuous-flowcode 14
2.2.2 GENIUSvV1: A discrete-facilities/discrete-matésieode 17
2.3 GENIUSv2designprinciples 20
2.4 SUMMAIY . . . e e e e e e e e e 21
3 Modelinganddesign 22
3.1 Systemmodel e 23
3.1.1 The region and institution classes 24 o
3.1.2 Thefacilityclass 6 2
3.1.3 Thematerialclasses Q 3
3.1.4 Thefacilitysubclasses 33
3.2 Simulationmachinery e 43
3.2 TIMEr e 43
3.2.2 Bookkeeper 45
3.2.3 Manager e 45

Page
3.24 Otherclasses 50
3.3 Input/outputinfrastructureo 50
3.3.1 Scenario specification 51
3.3.2 Historyrecording 45
3.4 SUMMArY . . . e e e e e e 56
4 Optimization formulations 57
4.1 Linear and network flow programming 59
4.2 Materials routing problem: Formulation 63
4.3 Materials routing problem: Discussion and modelingidet 67
4.3.1 Affinity-based arc costs and interactionrules 69
4.3.2 Feasibility and fungibility L 71
4.3.3 Flowstotherepository 73
4.4 Recipe approximationproblem Lo 74
45 SUMMAIY ot e e e e e e e 83
5 Test problems and demonstrationresults. 84
5.1 Once-throughfuelcycleresults 84
5.1.1 ComparisonswithVISION 84
5.1.2 Rule-based fabrication matching in three-regionlerab. 91
5.1.3 Rule-based unenriched uranium matching in four-regioblem . . . 95
5.2 Closedfuelcycleresults 101
5.2.1 Recipe approximationunittests 101
5.2.2 Asimplerecyclingscenario 105
5.3 Summary e e e e 110
6 Summaryandfuturework 112
6.1 Summary e e e e 112
6.2 Futurework 311
6.2.1 Facilitydataand behavior 113
6.2.2 Materialroutingproblem o L. 114
6.2.3 Recipe approximationproblem 115
6.2.4 Fuelcycledesignproblem 116
APPENDICES

Appendix A: Useful terms from object-oriented programming 125

Appendix

Appendix B:

Input and output file tables

Vi

ABSTRACT

Many factors have recently converged to renew interest tlean power in general and ad-
vanced nuclear fuel cycles in particular. Because of highrtieal and socio-economic uncer-
tainty about the nature of future global fuel cycles and tbeshtechnology that will support
them, systems analysis and modeling activities have becopatant aids for fuel cycle plan-
ners and policy evaluators. A consensus seems to be emeingintipis work cannot precede
via methods that decouple the engineering details of thlecitde models from the broader
international and regional policies that have also histidly shaped fuel cycle design deci-
sions. To enable a more integrated approach to fuel cyckersgsanalysis, the Simulation
Institute for Nuclear Energy Modeling and Analysis iniedtwork on a modeling tool called
GENIUS—Global Evaluation of Nuclear Infrastructure Utdiion Scenarios. This thesis de-
scribes the design of and early methodologies deployed iNIGE Version 2, a discrete-
facilities/discrete-materials nuclear fuel cycle sintigla intended to eventually aid in technical
analysis and design of advanced fuel cycles as well as irrausupply chain robustness evalu-
ation, financial and economic modeling, and non-proliferaand waste management studies.
The system model of GENIUSV2 is designed to capture theldedainteractions between
the various actors in a global hierarchy that includes mracind other fuel cycle facilities,
the institutions that own them, and the regions those irgiits serve. A simulation manager
facilitates the cooperation necessary for these actorsdioamge material in support of reac-
tor operation. After describing the model design and sitmutainfrastructure of GENIUSV2,
this thesis presents optimization-based formulationgviar of the formidable problems any
discrete-facilities/discrete-materials code must asilr€l) how to route materials through the
system by matching individual customers for fuel cycle goand services to appropriate sup-
pliers, and (2) how to properly combine available reproedssaterial into recycled fuel with
a suitable composition. Finally, it discusses results feosuite of testing and demonstration
problems that highlight the code’s novel capabilities amntarizes important areas for future
development.

Chapter 1

Introduction and context

Controversy over the role of nuclear power, and of advancettaufuel cycles in particu-
lar, looms large in discussions of U.S. and global energicpah light of several diverse but
interrelated developments. These factors include theraoed increase in global electricity
demand, emerging scientific consensus regarding anthropogemitribations to global cli-
mate change (Allali et al., 2007), macroeconomic concewutafossil fuel prices and price
volatility (Sauter and Awerbuch, 2003), heightened fedrsud nuclear terrorism due to what
political scientist Graham Allison calls “the prism of 971(2005), and the popular notion that
a “safe and just solution to the nuclear waste problem” (Damd Dawson, 2008, p. 19) would
improve the chances of success of the so-called nucleassamae (see Nuttall, 2005).

This thesis describes the need for, the design of, and keytsefsom a global nuclear
fuel cycle systems analysis tool intended to model, evaluatd eventually optimize various
nuclear fuel cycles with respect to, in roughly ascendirgdeoof difficulty of the modeling

task,

1. their electrical generation capacity,
2. the total mass flows of materials between their varioustfas,
3. the isotopic composition of those materials throughbetife of the system,

4. their robustness to perturbations and interruptionstethnical or socio-economic na-

ture, and

IEspecially in non-OECD (that is, developing) nations, whpsojected 2030 generation outstrips OECD
nations’ by 46 percent (Doman et al., 2008).

5. their total integrated cost.

This kind of simulation and analysis capability is espdgiainportant due to the capital-
intensive nature of nuclear facilities; uncertainty abiet details of their individual operation
and their cooperation as a fuel cycle system; and the inpertence of the regional, national,
and transnational entities engaged in the nuclear enserpHowever, before describing these
challenges and how nuclear fuel cycle systems analysis €af belp in investigating them,

we need to be clear about what we mean by advanced fuel cydestay they're important.

1.1 Advanced nuclear fuel cycles

Nuclear fuel cycles are the systems of facilities that prepase, store, and (in some cases)
recycle and/or permanently dispose of nuclear fuel andyipsdnlucts. While no generalized
description of the nuclear fuel cycle will capture everygstaised in every country to support
every reactor type, Figure 1.1 sketches a typical propasalri advanced fuel cycle in which
uranium is first mined, enriched, fabricated into fuel, abdrhed” in thermal-spectrum light
water reactors (LWRs) to produce electricity. The status gubé United States slates spent
LWR fuel for geologic disposal without further irradiatiogiving rise to the descriptasnce-
throughfor fuel cycles like the one we currently use. However, infigare we can see that the
used fuel from those reactors can instead be chemicallpcepsed and fabricated into fuel
for special fast-spectrum reactors calladner or transmutatiorreactors. In theory, this “fast
recycle” step can be repeated indefinitely to consume alfiis@nable material the system
creates, which is why proposed fuel cycles that behave thisare sometimes calledosed
fuel cycles.

As an aside, it's worth noting explicitly that there seemsh®no universal definition
of advancednuclear fuel cycles as such. We can generalize, though, ifngsficit descrip-
tions presented by a number of closely linked national atetmational bodies and projects,

including the Generation IV International Forum (GIF), thdvanced Fuel Cycle Initiative

2For a complete discussion of the integrated nuclear fuellecyand its component parts, see
Cochran and Tsoulfanidis (1990).

Low-Level Waste
\ Storage (LLW Disposal) o
Regycle (Uranium On
Strontium, Cesium o)

Fabrication Light Water Reactor “m”'”“‘l

LWR Spent Nuclear Other Fission
Fuel Separation I Products and

i Process Lossas
Transuranics,
Uranium
High-Level Waste
(Geologic Repositary)
Transmutation
Fuel Fabrication 4—|
Transuranics, Fission Products,
Uranium Procass Losses

Mining/Milling _.
[Fuel Separation

Advanced Burner

Reactor

Figure 1.1 Advanced nuclear fuel cycle proposed by the Global NucleardgnPartnership
program. Repeated actinide recycle in advanced burnetorsamproves the per-
formance of the system from a resource extension and wastagament perspec-
tive, since it recycles material that can produce power aodldvotherwise end up
in a geologic repository. Image from Fischer et al. (2008).

(AFCI), and (most recently) the Global Nuclear Energy Paship (GNEP). Their materials
(GEN IV International Forum, 2009; Kelly and Savage, 2008plvski, 2007) suggest that, if
such a definition did exist, it would include the reprocegafh used nuclear fuel for the pur-
poses of waste management and/or resource extension. imitbg document the modifier
advancedis used rather loosely to refer to future fuel cycles thabiporate some kind of
recycle.

Some analysts predict that nuclear power will assume araode in many nations’ elec-
tricity generation portfolios in the coming years, partgchuse of its status as a low-emissions
energy source. Indeed, peer-reviewed studies have shatnublear generation is among the
very best power-producing technologies on an emissiongifmvatt basis (Voorspools et al.,
2000) and remains competitive as an emissions mitigatonwime cost of generation is con-
sidered as well (Sims et al., 2003). Predictions of an Ana@rituclear renaissance show early
signs of coming to fruition; the Nuclear Regulatory Commissiarrently expects a total of 22

applications for new plant licenses representing 33 nets (Nuclear Regulatory Commission,

2009). Nuclear power seems poised for a dramatic increasdeivance to national and global
energy policy.

However, all this analysis and foreshadowed growth is basednce-through fuel cycle
assumptions. The increased attentionddwancedfuel cycles in the more distant future is
due to their potential to greatly extend available uraniesources and to reduce the long-term
spent fuel storage burden by recycling the transuranicnahteeated as the fuel is irradiated in
reactor cores. Regarding the former benefit, it's intergdtimote how resonant the economic
and political arguments for continued fast breeder reatdgelopment remain nearly 20 years
after the publication of William Jacobi’s prescient “FaseBder Reactors for Energy Security”
(1989); although LWR burnup values have increased in thevieténg years, thermal reactors
will never utilize more than a couple percent of the uranitmat passes through them. This
situation represents a clear opportunity for improvemesygecially in light of renewed concern
over the availability of energy resources. As for waste nganzent and storage, Wigeland and
colleagues’ important repository benefit study showed ttergial to increase drift loading by
a factor of dozens to hundreds under the kinds of reproagssid transmutation schemes that

might be possible in a fast burner reactor fuel cycle (2006).

1.2 The role of systems analysis

Needless to say, neither of these fast reactor technotegies the requisite reprocessing
capabilities necessary to make their fuel—has been conatieed. Indeed, the high cost of
nuclear facilities of any kind has long been an anathema pognts of nuclear technology, a
criticism not easily dismissed in an economy that is at presenstrained less by carbon than
by credit. It's little surprise, then, that funding for adwaed fuel cycles is difficult to come
by and that an underemphasis on “conservative economics’owa of the reasons cited by
a National Research Council committee for their recent umédhle review of the AFCI and
GNEP programs (Board on Energy and Environmental Systen@8,20 71). One way Ssys-
tems analysis activities can contribute to the R&D efforgrthis to provide careful estimates

about how much the various proposed fuel cycles will cost.

Perhaps more interesting for the purposes of this thessgtin were two of the commit-
tee’s other criticisms, both of which compellingly undernsethe importance of nuclear fuel
cycle systems modeling and analysis for planning and pglioposes. First, there is great
uncertainty about what the mature state of individual GN&gfhmologies will look like. Fast
reactor fuel forms, in particular, were singled out as a magdknown that will likely continue
as such for “many years” (Board on Energy and Environmentsie®ys, 2008, p. 54). Clearly,
the successful development of all critical-path technigl®gs a concern for fuel cycle planners;
in the meanwhile, they must depend on flexible system stunlg that can adapt to capture the
behavior of a variety of potential technologies and the eaoigdates over which those tech-
nologies are likely to become available. In other wordstesys analysis tools are useful for
examining the consequences of the uncertainty regardaigaual fuel cycle technologies.

Following from this first observation is a second and moraificant point: uncertainties
about the final state of particular technologies have inagibms beyond the individual facilities
they comprise. Designing a fuel cycdystenrequires understanding how the pieces work
together. In the face of so much uncertainty, systems aisdigEomes important not just for
predicting and improving the performance of a fuel cyclefoutdetermining if it will work at
all. This is exactly the kind of situation the committee déses when it points out the need
to ensure that proposed U.S. recycling methods are conhpatith the fuel cycles that other
GNEP partner nations are considering (Board on Energy anoldimental Systems, 2008, p.
53).

Finally, to expand our view beyond purely technical unaaties, we note that most if
not all the discussions about advanced fuel cycles invotseems that incorporate significant
international cooperation. History and common sense sidigat such cooperation, especially
in the field of nuclear materials and technology, is subjedudden and dramatic change—
possibly absent much concern for the technical reperaussiystems analysis can and should
contribute by examining issues of regional interdependefbis kind of uncertainty about the
operation of fuel cycle systems is just as important to exaras the more technical concerns.

And as we will see in the next chapter, few if any existing sodd that job very well.

We mention finally that we are not the only ones stressingtipoitance of systems analy-
sis activities in planning the future of nuclear fuel cyclés close this introductory chapter, we
cite at some length the recent National Academy of ScieNeg®hal Research Council report
“Internationalization of the Nuclear Fuel Cycle: Goals a&tgies, and Challenges,” which also

emphasizes the need for an increased emphasis on systeiksghi

The joint committees believe that a comparison to make esoamong differ-
ent fuel cycle options (reactors, fuel types and sourcesntsipel management,
and processing) must use a systems approach. Such analyskelsoonsider the
entire life cycle of proposed nuclear energy systems, rategy assessments of
fuel processing, fabrication, reactor design, and morely @nthis way can key
trade-offs be made among different parts of the system. likedy that the best
technologies for processing spent fuel will be differenpeleding on the specific
reactors in which the processed materials will be irradigaed the fuel fabrication
approaches for them ...

Good decisions among different proposed processingeaton-reactor systems
require clear, consistent, and well-thought-out critdvesed on justifiable system
objectives. Picking a particular numerical target for sasgstem characteristic
(such as 99.99 percent purity for uranium separated fromt$pel) without care-
ful analysis of the overall system benefits and costs of mgeliat goal leads to
poorly optimized systems ... A good goal would be an integta¢actor fuel cycle
system that offers the best combination of economics,\safeturity, proliferation
resistance, environmental impact, process operabihty sastainability, given the
situation that exists for a nation at a particular time.

... The role of designers and technical experts is to makar ¢hee choices and
trade-offs that need to be made, outline the benefits and sldes of each of the
leading approaches, and do their best to ensure that thei@ecultimately made
are well informed and carefully considered. (Nuclear andi&amh Studies Board,
2008)

1.3 Thesis overview

Very broadly, the goal of the work | report on in this thesisswa design and implement a
nuclear fuel cycle systems analysis tool capable of pragidhis kind of insight. We can sub-
divide that overall objective into several subtasks, treatts of which comprise the majority

of this document:

1. Identify key modeling capabilities and software features.Due to the time-intensive
nature of scientific software development and the relativaaturity of fuel cycle sys-
tems analysis as a cohesive discipline, careful needysasatork should precede any
major development effort. Thus, Chapter 2 discusses egistiatems analysis tools and
their ability to probe questions raised by advanced glalelldycle proposals. This chap-
ter also introduces the design principles of GENIUSv2, tiserdte-facilities/discrete-

materials fuel cycle simulation tool we developed to begimeet these needs.

2. Design and implement an appropriate fuel cycle model and thénfrastructure to
support it. Even with clearly articulated design principles and a listlesired mod-
eling capabilities in hand, the complexity and uncertawityuture fuel cycles ensures
that designing an appropriately robust and flexible tool i®a-trivial research and de-
velopment task. Chapter 3 describes the design and implatienmbf GENIUSV2 in

considerable detail.

3. Develop mathematical formulations for the two key optimizaion problems posed by
the discrete-facilities/discrete-materials modeling peadigm. To fully support simu-
lation of both once-through and closed nuclear fuel cy@deadiscrete tool like GENIUS
must include at least basic functionality for solving twg kgoblems related to system-
wide material flow: a routing problem that determines hovilitaes will work together to
mutually satisfy each others’ supply of and demand for ni@teand an approximation
problem that determines how collections of separated mat&n be combined to pro-
duce recycled fuel with close to the desired composition.p&rad discusses algorithms

for solving these problems using linear and network-flongpaonming formulations.

4. Test (and, when possible, benchmark) the code via simple arnltlistrative cases.Few
fuel cycle modeling problems have unambiguously correstans, and the emergent
system-wide behavior of even seemingly straightforwamhados can quickly become
complex and opaque. Chapter 5 discusses the results of a senereasingly difficult

test problems and compares them to analogous results filwen @ddes, as appropriate.

Chapter 2

Literature review and motivation

This chapter will discuss some of the nuclear fuel cycleeayst analysis tools that are
currently available, especially their capabilities anthscsignificant gaps therein. It will also
introduce the code whose design and methodologies arechs & this thesis: Global Evalu-
ation of Nuclear Infrastructure Utilization Scenariosrdfen 2 (hereafter “GENIUSv2"). Note

that this chapter is not meant to definitively survey all & #vailable tools but, rather,

1. to review relevant portions of the thorough needs amalysrk that has been performed

elsewhere;

2. to delineate persistent opportunities for GENIUSv2 eesqlly with respect to model-
ing needs that are unavailable in Idaho National Labor&ariSION and GENIUSv1

codes; and

3. to introduce the approach and design principles of GENRJS

2.1 Fuel cycle system code surveys

In 2006, Kemal Pasamehmetoglu of Idaho National Laborgidtly) and Phillip Finck of
Argonne National Laboratory (ANL) reported on a collaba@atesearch effort called the Sim-
ulation Institute for Nuclear Energy Modeling and Analy§68NEMA). This project aimed to
“develop a simulation network that can model the global eacknergy infrastructure, the as-
sociated fuel cycles and [their] components” (Pasamehghetnd Finck, 2006, p. 155). The

enterprise-level tool envisioned as both a standalonessanalysis code and an eventual

interface to individual fuel cycle component models was edf@ENIUS. A prototype of this
tool (GENIUSv1) was developed at INL and Idaho State Unitetsy Chris Juchau and Mary
Lou Dunzik-Gougar (Juchau et al., 2006). The detailed naadkysis and design specification
process for GENIUS was originally published by Juchau andZikuGougar as “A Review
of Nuclear Fuel Cycle Systems Codes” (Juchau and Dunzik-Gpa@a6} and was also in-
cluded in Juchau’s Master’s thesis about GENIUSv1 (Juch@d8). Several points from this

review warrant preliminary discussion here.

2.1.1 Facility and material modeling

The proposed SINEMA modeling framework aims to paint a catgopicture of the nu-
clear enterprise and thus to support detailed studies aénmhtransportation, facility oper-
ation, fuel cycle system performance, non-proliferatimk,renergy economics, etc. Conse-
guently, the GENIUS software specification calls for bottilfies and materials to be modeled
as discrete entities whose histories can be tracked indallyl

Juchau shows that few existing codes have this capabilitgstMf the others are what
he callscontinuous-floncodes but | will callfleet-based, continuous-flowodes for reasons
that will become clear in Chapter 3 (and will necessitate mafcGhapter 5's math). These
codes tend to be built on top of commercial “stock-and-flow” syssedynamics packages like
Powersim Studio and Stella (Powersim Software, 2008; igstesis, 2008). They operate by
modeling the entire fleet of facilities in each stage of thelear fuel cycle as a single stock,
through which multiple continuously varying streams of enel flow in and out at a rate ap-
propriate for the total throughput capacity of the fleet.sliiodeling decision allows for large
fleets of facilities to be modeled within the constraintshef inderlying software platform, but

it disallows the kinds of discrete interactions requiredliy SINEMA framework.

LA similar but more expansive revisiting of Juchau’s bassktia now ongoing at the University of Cincinnati
(see Miron, 2008) but was not completed in time to have itsltesliscussed here.

2See, for example INL's VISION (Jacobson et al., 2006, 200i) ANL's DANESS (Van Den Durpel et al.,
2003, 2007) codes.

10

2.1.2 Regional modeling

Implicit in the GENIUS specification’s language about itkeras aglobalcode is the notion
that it support modeling of distinct regions around the @oiThroughout this document, the
termregionwill be used flexibly to refer to intranational, national dainansnational divisions
that can be characterized by a distinct time-varying denfanchuclear energy and within
which some set of reactors operate in order to satisfy thaade. At minimum, such regional
modeling functionality must allow the code to store multiglemand curves (one for each
region) and identify distinct subsets of the world’s fa@ with each region. However, a need
exists for regional modeling that is much more rich and caxphan would be offered by
an accounting-based approach that merely maps demandalitgt &ets to particular regions
and that allows a region’s state and behavior to remain lladgroupled from those of other
regions.

Chapter 1 introduced the need for systems analysis toolsaipatire and explore the ways
in which regions will cooperate and compete with one anoitinéne context of a global mar-
ketplace for fuel cycle materials. Perhaps the most obvéxasnple of this modeling need is
the desire to examine various proposals for fuel serviaesigements between so-called “sup-
plier states” and “user states,” which are illustrated igufe 2.1. It is unclear at present how
and (and perhaps even if) such interactions would work, agihining to answer those ques-
tions seems to us to require a model that captures both theitet details of the reactors and
other fuel cycle facilities being operated by both staedthe economic and financial state of
the client region, the user region, and probably other stalkiers in the system as well.

We do not know of any region-enabled codes that do so; Juslsnalysis suggests that
Brookhaven National Laboratory’'s MARKAL code (Loulou et &Q04) is well equipped to
handle the economics but that it models the nuclear fuekaycinsufficient detail to capture
and verify the technical aspects of these interactions.chisn that, with its model of other
sectors of the global power industry, MARKAL would be “a goashgpanion” to more detailed

nuclear-specific codes resonates with ways in which thagt b@d been used to study the role

11

- | resosion |
e s
= Nschoar Fuel
N e

Winimize
Hucanr
Waste

Fuai Sarvices

e S

Figure 2.1 Inter-region fuel services interaction proposed by theb@ldNuclear Energy Part-
nership. Investigating economic and diplomatic mechasitorencourage and se-
cure such interactions is a chief motivator for regional slog) capabilities in nu-
clear fuel cycle systems analysis. Image from Lisowski (3007

of nuclear power in the wider context of energy policy andneenics. In fact, one hopes this
comment will continue to serve as a reminder of where to lthetscope of GENIUS, which
may already be an overly ambitious undertaking with resjzettte level of detail the model is

expected to contain.

2.1.3 Optimization capabilities

From the beginning, GENIUS has been intended for systemlysasiand optimization.
Juchau notes that no available tools optimize the fuel aytlerespect to an integrated, global
objective function, though some do perform local optini@aton particular parameters. Of
course, there are many difficulties associated with fortmganuclear fuel cycle system de-
sign (or even just operation) as a robust optimization gohlmany of these challenges will
be discussed in Chapter 3. Relevant at this juncture, thosgie iprevalence in these codes of
decision-making heuristics that artificially constraie thesign decision space, possibly elim-
inating the global optimal solution. For instance, a hdigifr choosing an optimal tails

fraction at a uranium enrichment plant might not captureetifects of a delay in the enriched

3See, for example, Nystrom and Wene (1999).

12

material’s availability to fuel fabricators, resultingieactor downtime and a much greater in-
crease in the cost of electricity than would have resultechfan enrichment procedure that
would have cost a little more but allowed the material to kelable sooner.

Jain and Wilson (2006) discuss several of these heuristibgl arise quite naturally in
order to handle basic problems like reactor deployment aabdilocation) and point out that
they are present in VISION and DANESS as well as the MIT code CAKBoscher et al.,
2004). In fact, it seems impossible to build a functioningethat is completely devoid of de-
cision heuristics. Thus, we merely note at this juncturéttiir elimination wherever possible
(in favor of decision strategies that do respond to a glob@daiive function) is very much an
outstanding research question for fuel cycle systems atsalgne to which we will return later

in this chapter and especially in Chapter 4.

2.1.4 Software design and infrastructure

The originators of SINEMA understood well the challengesqubby the proliferation of
nuclear fuel cycle systems codes and the more detailed ¢bdemodel the behavior of the
individual facilities and materials that comprise fuel leysystems. They believed that a uni-
fied modeling framework would help manage this phenomenancaordinate collaboration
between developers and, as it were, between the codes thems&hus, they specified that,
in general, GENIUS should “[h]ave a software architectina ts modular, flexible, open and

accessible” and, more specifically, that

1. The tool must maintain abstraction between data and gsadgorithms. Both databases
and modules of process source code should be replaceahpelateable without major

alterations to the overall source code and system arcthitct

2. The tool architecture, source code and documentation Ineuss open and accessible as

possible to project developers and collaborators, bot#idarand domestic.

3. The tool must be able to communicate with other codes firoeeak-links/databases to

support the fuel cycle modeling effort. (Juchau and Dur@dugar, 2006, p. 7)

13

This is a very difficult specification to meet for codes thatevet designed from the start to
meet it, and indeed Juchau and Dunzik Gougar concluded tmeg of the ones they investi-
gated satisfied the final item (2006, p. 8).

Nevertheless, it is this author’s opinion that the promisa fuel cycle code that meets this
group of requirements alone would justify the resourceslihee thus far been devoted to GE-
NIUS development. One of the major themes of this thesisasdiscrete-facilities/discrete-
materials (hereafter “DF/DM”) fuel cycle systems analysases difficult but rich and im-
portant problems in the areas of optimization, economiceting, and data management, in
addition to more familiar physics and engineering probléikes approximations to in-core
isotopic inventory tracking. A tool that can encourage aodiration between the different
research groups interested in this problem—especiallpkthat supports modular software
library substitution for the parts of the fuel cycle that tan tricky but self-contained sub-
problems—could be a boon to the field. That's what the origirsaof SINEMA seemed to
believe, and the use of modern scientific computing tools justymake it possible. Again,
we’ll come back to this issue as we introduce GENIUSV2 latehis chapter and in Chapter
3. Let it suffice for now to say that (1) none of the existinglsomere designed to support this
functionality and (2) we believe figuring out how to provideapresents its own relevant and

non-trivial research question.

2.2 Specific limitations of VISION and GENIUSv1

This section discusses two existing codes in extra detdiL’sIVISION code is proba-
bly the most important existing tool because of its power aradurity, because developers
have consistently reported on its progress in the liteeatsee Jacobson et al., 2006, 2007,
Phillips et al., 2007; Yacout et al., 2006b), and becauseDiygartment of Energy has made
use of it for AFCI- and GNEP-related analysis and projecti@e® McCarthy, 2007). It also
serves as atypical example of fleet-based, continuous-fistgiss analysis. The UW-Madison
Computational Nuclear Engineering Research Group (CNERG)hadftw am a part, has con-

siderable experience using and extending VISION, so weamraliir with its strengths and

14

limitations and can speak to a few of the areas in which itsehsdsimply incompatible with
certain research questidns

We do not claim that GENIUSv1 has attained anywhere nearM\& level of sophisti-
cation and “market penetration,” nor would one expect itdgehdone so given its age and the
resources that have been committed to it. Neverthelessseesh it here for several reasons.
First, it serves as a sort of “proof of principal” for doing [V systems analysis on the kinds
of global nuclear fuel cycles proposed by the GNEP progragco8d, the difficulties its devel-
opers faced have manifested themselves in GENIUSv2 dawelopas well, so examining v1
in a little more detail stands to provide some insight into own problems. Finally, because
GENIUSv1 was designed to fill the needs discussed in Sectligrit 2 important to identify if,
where, and why it fell short of that goal, so we can be confidlesit our work on GENIUSv2

is not redundant.

2.2.1 VISION: A fleet-based, continuous-flow code

We begin this section with a concrete example. Without gaitg too much detail about
the design and implementation of VISION within the PowerSitadio systems dynamics en-
vironment, or that of its Stella-based predecessor, DYMQN&acout et al., 2006b), we can
still achieve some understanding of their basic workinggkgmining two isolated portions
of these models. The top of Figure 2.2 shows the so-calledt®eRark Sector in DYMOND,
which is somewhat simpler than its VISION replacement aretefore easier to visualize.
Right away, we get some sense for the fleet-based nature offMEODID-VISION model;
the labeled boxes along the main “conveyor belt” each remtea dynamically calculated
value characterizing the number of reactors in each of a eummbsubsets of the fleet (e.g.,
reactors that are under construction, reactors that ady teaperate, reactors that are nearing

retirement, etc.). The thin arrows show that the rates tberchine how quickly reactors move

4Though it hopefully goes without saying, it bears explicémtion that this section is not meant as a criticism
of VISION. Indeed, many of its features that act as limitatiavithin the framework of our discussion here are
strengths in other contexts. And of course it routinely eslmany problems that will remain out of reach for
GENIUSV2 for some time yet.

15

from one subset to anothefinal Construction Rate, Reactor Aging Rate, etc.) are

controlled by user input parameters (elgicensing time) and possibly by feedback from
dynamically calculated measures of the system’s state.c@mémagine how the values in this
sector can then subsequently serve to control the behavather sections of the model. For
instance, we would expect that the numbeFoésh Reactors will help determine the rate
at which material moves in and out Bfiel in reactors. This latter value is part of the
DYMOND Fuel Cycle Sector, which again is somewhat simplentita VISION replacement

and is therefore shown in the bottom of Figure 2.2 (Yacout.e2@06a).

Final

Licencin
reacbrs o g New Reactors Constudion Reaclors Begin Reactor Reactars Stiop Reactar
o Fuel Request s DDEFBT.BH R Aging Rate Order Fuel Rate Shutdown rate

Reactor

i§ i s 4 i o g %
Reactars Reactors Under constr
under lincen under constr| need fuel
near s hutdi
|
E Reactor .
Reacters L\censmgt\m Constr time Fuel prep ime lifetime
tobe built Preoper time Fuel prep time

Daplaied
u

Crder

Mining Tails.
Rata
IEnwuuﬂe e Enrichad Ready Fualin SF Interim Long Term
i X _°)‘J_’ matarial laJ cation§ fua reactors | Stewaga] Staraga
i Erridament ¥ Fabrcaton Fusl Load SF prod Caal
Rats Rat Rate -

Figure 2.2 DYMOND screen shot showing (top) the code’s fleet-based oediccking model
(the Reactor Park Sector), including reactor deploymerisascheuristic, and (bot-
tom) the code’s model of material traveling through the fugdle itself (the Fuel
Cycle Sector). The VISION equivalents are similar but more demgmages from
Yacout et al. (2006a).

Where does VISION fall short of being able to model advanced ¢ycle problems of
the type we're interested in here? Obviously, the biggeptligs in the lumping of fleets of
each type of facility together and tracking only the totajji@gate mass flows of each isotope
through those lumped entities. Modeling individual fd@k in the Powersim Studio frame-

work would quickly become untenable (because of the largeb®au of facilities and linkages

16

that would need to be manually specified for each study smgnand modeling discrete mate-
rial shipments is difficult under the continuous-flow pagadfi. Another significant drawback
of VISION is the lack of a simple mechanism for performing #ied of regional modeling
discussed in Section 2.1.2. This is not to say that such nmagisl impossible; one can imag-
ine any number of clever, probably iterative strategiesdoning individual problems for each
region and capturing first-order measures of the way theithaial regions would need to inter-
act with one another. However, the model was clearly notgthesi for capturing the regional
heterogeneity of GNEP-type fuel cycles.

Regarding system optimization, note first that the very magirtools like Powersim and
Stella makes especially difficult the would-be optimizedée of eliminating heuristics. In-
deed, these modeling systems are designed to study thésedfdeedback and other heuristic
decision mechanisms on a dynamic system; in some senséstlusugo with the territory. At
the very least, it seems fair to say that eliminating the g@raeployment heuristic shown in
Figure 2.2 would be a nuisance at this stage in VISION devety. Using iterative optimiza-
tion toolkits to identify promising fuel cycles would regung doing just that.

Interfacing with those optimization tools, or any otherezkil software for that matter,
would also be a nuisance. Indeed, another significant limitaof VISION is the graphical-
user-interface-based, stand-alone, closed-source mgdaivironment. There’s very little in-
centive to develop tools that will workith VISION because of the difficulties of linking other
software to Powersim Studio This forces developers to use systems-dynamics-baske tec
niques (or embedded Visual Basic scripts) for solving alhef difficult sub-problems the nu-
clear fuel cycle presents, even those for which robust antpatationally affordable software
libraries currently or may someday exist.

We close this section by introducing just such a sub-proptare of the more difficult ones

that fuel cycle analysts face. INL's Steve Piet referrechie problem as the “Winery” issue,

5See, for example, the single-reactor benchmark problecusk®d in Section 5.1.1.

6There are mechanisms for doing so, including the SimCouptadule for linking Powersim models to the
Matlab/Simulink modeling framework (Powersim Inc., 2008ut note that this route creates additional depen-
dency on proprietary software.

17

evoking an illustrative metaphor for the problem (preserdll closed fuel cycle simulations)
of the “mismatch between the ever-changing compositiorsetiifuel to be separated and the
as-fixed-as-possible composition of fuel to be fabricatedhfrecycled [transuranics]” (Piet,
2007, p. 1J.

| refer to this problem agecipe approximatiorbecause | propose approximation-theory-
based formulations for solving it (see Section 4.4). FelkCI| Fellow Shannon Yi has stud-
ied it as well, albeit in the VISION context, and others maywaeking on it also. The point
is that this is a difficult research question that will likelgt be settled satisfactorily for some
time. In the meanwhile, platforms that make it easy to “plugl @lay” different forms of
the solution (which may require support libraries of theimodepending on their level of so-
phistication) would seem to be ideally suited for testing aomparing promising approaches.

VISION’s software infrastructure makes it an unlikely catate for filling this “test bed” role.

2.2.2 GENIUSv1: A discrete-facilities/discrete-materiss code

GENIUSV1 filled several of the modeling gaps identified inklwc and Dunzik Gougar’s
code review. However, due to limits on time and support, stiemained to be addressed.
Among its most important successes, GENIUSv1 showed thahimgful mass flow data could
be calculated via DF/DM modeling of large, complex fuel eystenarios with regional het-
erogeneity. These scenarios, based on an initial condépresenting the current state of the
global fuel cycle system and GNEP-type assumptions abduttefgrowth and regional inter-
action, were reported on in Juchau’s Master’s thesis (lyck@08) and at the Global 2007

fuel cycle conference (Dunzik-Gougar et al., 2007). Figuu&2plots some typical output from

"The metaphor goes like this:
1. Determine what grapes (used fuel) are available, witht wharacteristics.
2. Adjust your intended product specifications as needed.

3. If needed, blend different grapes or use a wine cellartageore consistent product. Blend grapes (used
fuel) from different sources; the properties of those gsageange with aging and source. Use a wine
cellar of different wines (separated material) laid dowdiiferent years.

4. Determine what you actually get. (Piet, 2007, p. 1)

18

GENIUSV1: the flow of material to LWR fuel client states durithg course of one such sim-

ulation.

Client State LWR Fuel Demand

Ukraine
Switzerland
Sweden
5000 : Spain
South Africa
Slovenia
4000 - ® Slovakia

ROK
3 M Pakistan
3000 44 g ® Netherlands
o B Mexico

W Lithuania

2000 A LR MW iran
: f : o India
B Hungary
W Germany
W Finland
m Czech Republic
B Bulgaria
® Brazil
M Belgium
Year W Armenia

6000

MT Fuel / Year

1000 | ha

2038 :
2044 S
2062 -
2068 -
2074 :
2080 4
2086 -
2092 -
2098 -

s
m]
oo
o™ M
o o
o~ ™

2008 S
2014 P
2020 =

Figure 2.3 Typical demand data from GENIUSV1 plotting the mass flow of LWH to client
states (GNEP “user states”) under a GNEP-type growth scen#tiaealistic ini-
tial condition. Note that the “jaggedness” of the data is @ra result of DF/DM
modeling in which (a) the electricity demand curve does rtsader fuel order-
ing cycles of existing reactors, (b) large, discrete baaffenaterial always travel
together, and (c) the visualization procedures do not pmrfaveraging or other
artificial smoothing. Image from Juchau (2008).

Note the high level of detail. As material moves from fagilib facility, GENIUSv1 sums
and prints to the appropriate regional output file the anmeads flow for each stage in the
fuel cycle. Thus, collecting data of this nature is a strHmiward though perhaps tedious
task under the data structures that are in place. Howevefut@xamination of this plot still
yields some strategies about ways to move forward. Theref ispurse, a tension between
(on the one hand) the desire to collect as much detailednrgton as possible about the
history of the simulation and (on the other) the ability téicaéntly store and process that

information. Although | have not performed detailed diagpics on GENIUSvV1, | suspect

19

that some of its design decisions were made primarily inomse to the limitations of this
prototype code’s software architecture. Relying on the doatlon of the (relatively) slow
and memory-hungry Python scripting language and a systeéexifile-based output probably
limited the “quantum-size” of GENIUSv1's discrete matégiarhis limitation manifests itself
as one of the causes of the somewhat disconcerting jaggedhtbe data in Figure 2.3. As we
shall see, GENIUSv2 implements a more robust and detailsigsyfor tracking and storing
material histories, one that can handle the decision t& traaech smaller quanta of material,
if desired. Software infrastructure for material trackiagust one of several places where we
have gone to great lengths to improve and modernize the GENtde.

A second such area is in the potential for realism in the secmnomic interactions be-
tween (and, in the case of GENIUSv2, within) the regions ef @GENIUS model. To our
understanding, the extent of the complexity in modelingéhateraction in GENIUSv1 comes
in deterministically specifying the fuel cycle region framtich each fuel user region will re-
ceive its material. GENIUSVZ2 introduces another layer aftedztion in the hierarchy of fuel
cycle actors: the variousstitutionsthat own the facilities in a given region. It also implements
a more flexible and dynamic scheme for modeling the intesastbetween various facilities,
institutions, and regions (see Section 3.1).

That scheme is also more optimization-friendly, which kad to the third novel improve-
ment in GENIUSv2 with respect to its predecessor: the ebtnom of two major decision
heuristics. The first is the GENIUSv1 solution to what we wefler to as théuel cycle design
problem(FDP). GENIUSvV1 still deploys fuel cycle facilities in a nraar similar to VISION,
by hard-coding some reasonable set of feedback-baseddesesibing the conditions under
which a new facility should be built. For instance, fast teesare deployed in response to a set
of constraints that include regional electricity demand tie availability of recycled material
for fuel. GENIUSv2 eliminates the FDP heuristic by chandiregn a demand-driven facility
deployment to a user-driven one.

The second GENIUSvV1 decision heuristic we've eliminatasesronly under the DF/DM

approach. Unlike in the in the fleet-based, continuous-flaragigm, in which a material flows

20

through each stage of a single, unified pipeline (like DYMO$IBuel Cycle Sector from Fig-
ure 2.2.), the control logic in a DF/DM code must constangly eihe question “Which supplier
of commodity X should customely’ get its fuel from?” We’'ll call this thematerials rout-

ing problem(MRP). Juchau solves it via a combination of the user-spegifegion-to-region
pairings discussed earlier or, when no pairing exists, @lgineuristic that matches each cus-
tomer to the supplier that currently has the most unusedctigpd his heuristic is perfectly
reasonable, but it precludes an optimization-based apprib@at can capture the consequences
of market competition and other socio-economic forces. ®ygace it with an optimization
problem known as aetwork flow progranthat solves the MRP with regard to a global objec-

tive function: the total cost of the chosen routing (seeiect.2).

2.3 GENIUSv2 design principles

We can generalize this chapter’s findings into a set of fowigiteprinciples that have
guided my work on GENIUSv2. These principles are drawn frbm needs analysis work
summarized in this chapter, but they also reflect my undedstg of the most important and
challenging among those needs, especially the ones GENId8&s not meet. These prin-
ciples are general enough to loosely summarize the ovengr¢themes of the very detailed
GENIUS specification (see Juchau and Dunzik-Gougar, 20@@)dve proved to be a bit more
supple than that document in guiding day-to-day design ampdlementation decisions. | re-
cently mentioned these four principles in a conference papgently in press, calling for

system study tools that are simultaneoustyailed flexible robust andgenerative

By detailed we mean that [the study tools] model a wide range of inforomat
about the nuclear fuel cycle scenarios being considerethilBe study tools must
model very specific facility deployments and facility op@ya modes. Byflexible

we mean that they adapt well to new approaches for how thaséiés should
work together. Flexible tools are as free as possible frosnraptions about what
an advanced fuel cycle flowsheet will look like and are easyadify or augment

to model new approaches. Bgbust we mean that they store and process the
necessarily large data sets efficiently. Robust tools shasgdnodern computing
libraries and other resources. Bgnerative we mean that they can identify new,

21

promising, or optimal fuel cycle scenarios. A generativetssn analysis tool is in
a sense also a system design tool. (Oliver et al., 2009)

2.4 Summary

This chapter introduced the GENIUS project and surveyeavtiri that helped determine
its purpose and scope. We noted gaps in the modeling and ingtion capabilities of ex-
isting fuel cycle codes, especially with respect to the aihoertainly international nature of
future advanced fuel cycles (including those proposed eYaANEP program) and the difficult
problem of limiting dependence on decision heuristicsti®aar attention was paid to INL's
popular VISION code, which is not compatible with the diser&acilities/discrete-materials
modeling paradigm called for by the SINEMA program, and toNBESv1, which served as
a useful prototype but needs substantial revision in omé&etcompatible with the overarch-
ing goals of the project. These claims and observations teme generalized into a set of
design principles for GENIUSv2. The next chapter will shawtthose principles manifested

themselves into an actual code.

22

Chapter 3

Modeling and design

This chapter describes the design of GENIUSv2, with padarcamphasis on its model
of the nuclear fuel cycle. Neither this chapter nor the thesi a whole is intended as code
documentation or as a user guide or other systematic sumofidBENIUSvV2. | will focus
on how the code provides (or is designed to be extended tad@omany of the novel mod-
eling and analysis capabilities identified in Chapter 2. éliph optimization considerations
affected many of the design decisions explained in this &naformulations for the various
optimization problems this model gives rise to are found iathr 4.

Section 3.1 will introduce the nuclear fuel cycle system slatself. This discussion will
include descriptions of the classes that define the behaVits discrete facilities and discrete
materials, in addition to the other entities the model ant®dor. Section 3.2 will describe
the simulation machinery, that is, the aspects of the codedatow the entities in the model
to work together to produce the kinds of system behavior wetwastudy. This machinery
includes aimer that moves the simulation forward paokkeepethat helps record the history
of the simulation, and emanagerthat oversees and directs cooperation between the emtities
the model. Finally, Section 3.3 describes the infrastméctf the code, including the use of
modern computing tools for managing the large amount of dd/DM code requires and

produces.

23

3.1 System model

The global nuclear fuel cycle model implemented in GENIU®w&3 first described at the
2007 GNEP Annual Meeting (Wilson and Oliver, 2007) and hanged very little in the in-
tervening time. The model's hierarchical structure isstiated in Figure 3.1 via a simple
two-region example. Each scenario modeled will includesast one instance of three types
of discrete entitiesregionssubject to some demand for nuclear powacilities that attempt
to provide that power or to otherwise support the fuel cydtebally or regionally, and the
institutionsthat own those facilities. So in Figure 3.1, the region onrigat might repre-
sent a large fuel cycle state in which many different insitus sell electricity or nuclear fuel
cycle materials or services. The left-hand region mightesent a client state with a single
government-owned utility that operates reactors fuelét miaterial purchased or leased from

the fuel cycle state.

Institution Imstitution

| - 3 ¥ [Reprocessing
Institution d

Reacia
Institution Institution
E <

Figure 3.1 The hierarchical structure of the GENIUSv2 model. Note the tamidiof a new
“layer” of discrete entities: the institutions that own amgkrate nuclear fuel cycle
facilities. Image adapted from Wilson and Oliver (2007).

The terminology for naming these entities has been chosencare and reflects our desire
that the model be as flexible as possible. Intypical use, asdbr the kinds of problems Juchau

ran with GENIUSv1, a region will represent a particular copnHowever, one can imagine

24

cases in which a number of countries in a transnational negight have energy infrastructures
that are sufficiently coupled to warrant modeling them asglsidiscrete entity

Similarly, we usanstitutionas a general term to encompass utilities and other public, pr
vate, or governmental companies or organizations thatcgeate in the nuclear fuel cycle.
Note that many (if not most) of these institutions own mom@ntlone facility. As | mentioned
in Section 2.2.2, institutional modeling is new to the GESIgroject and—at least to our
knowledge—to the entire collection of codes that performaitisd nuclear fuel cycle modeling
and systems analysis. We believe this intermediate laylebeinecessary (or at least highly
useful and appealingly realistic) for the kind of couplednigical and economic analysis that
will be needed to investigate global fuel cycle proposalth@nmanner suggested by the Na-
tional Academies (see Nuclear and Radiation Studies Boa@)20

Finally, note that the ternfacilities emphasizes that, although reactors, fuel fabrication
plants, enrichment plants, etc. all have specialized dadabahaviors, nuclear fuel cycle fa-
cilities look very much alike, conceptually. Except for seoat the extreme ends of the fuel
cycle (uranium mines and waste repositories), each muatrohtparticular fuel cycle mate-
rial (e.g., fresh fuel or unenriched uranium hexafluoriggsform some operation on it (e.g.,
irradiation or enrichment), and pass along new materiadgs,(gpent fuel or enriched uranium
hexafluoride) to another interested facility.

This functional similarity, and others like it, motivatedroextensive use ahheritancé
throughout the region-institution-facility (hereaftd®-1-F”) hierarchy, as well as in the mate-
rial model discussed in Section 3.1.3 below. In GENIUSV, discrete facilities that so far
we've only discussed theoretically are in fact implemerasdnstances of several specialized
subclasses of a more general facility class. Similarlydikerete materials are instances of the
material class and its subclasses. These two class hiesitelke literal advantage of inheri-
tance to share common data and behaviors. However, theajéhes of inheritance operates

in the three levels of the GENIUSv2 R-I-F hierarchy as wellr fagtance, the economically

LOr, conversely, an intra-national region might operatepwhdently enough to justify distinct treatment.
2See Appendix A for a brief description of this and other intpot terms from object-oriented programming.

25

viable operation of a facility depends upon a number of firdrmgarameters, including mate-
rial costs, tax rates, debt costs, etc. The values of sonteesétparameters (insurance costs,
say) might be a function of the facility itself, but othersi¢h as the internal rate of return) are
a function of who owns the facility, and others still (suchtls tax rate) depend mostly on
where the facility is located. Individual facilities caretin“inherit” (in a non-technical sense)

the appropriate values based on their membership in a plartiegion and institution.

3.1.1 The region and institution classes

At this point in the development of GENIUSvZ2, the main jobdle region and institution
classes are storage and message-passing. The latter didldussed in Section 3.2.3 for all of
the classes that have the ability to communicate. As foagirthe region class must provide
each region object with data structures for storing thetetsty demand of the region and the
collection of institutions that operate within its bordess to speak. Because we decouple elec-
tricity demand from facility deployment for optimizatiomgposes and do not currently include
the regional electricity demand in the objective functiondetermining materials routing, the
storage of regional demand data is not, strictly speakiagessary at present. However, as the
code’s objective function formulations continue to majutrvill be important to have access
to regional electricity demand at run time. The institutadass has similar storage needs, with
each institution keeping track of the facilities it opesatnd its static plan for building new
ones in the future. As | mentioned above, the region andirnigtn classes will also store rele-
vant economic and financial parameters for their membernsherit as the GENIUSv2 model
becomes more sophisticated.

Finally, though regions and institutions need not be im@etad as classes in order to sup-
port this particular functionality, we note also that the-R-hierarchy naturally establishes
set-theoretical relationships between simulation esjtfor instance, a facility is a member
of (1) its own set, (2) the set of facilities owned by the ington it belongs to, and (3)
the set of facilities residing in a given region. Thus, thgioa and institution classes (and

also the facility class described below) implement sebtégcal operatorsigSubset0f (),

26

isSuperset0f (), etc.) to allow for simple and efficient calculation of thastationships

when exploring the possibility of trade between the varisiosulation entities.

3.1.2 The facility class

The facility class and its various subclasses are more goatet than regions and institu-
tions because there is much more that a facility needs to lamahbe able to do, so to speak.
However, as | mentioned above, it's possible to simplify apgropriately encapsulate some
of this complexity by including common data and behaviorainabstract facility class and
specialized behaviors in the appropriate subclasses. SYeligcuss the common facility class.
The following prose descriptions are summarized and autgden a tabular listing (Table
3.1) at the end of this sectidn

3.1.2.1 Facility data

The simplest aspect of the facility class to understandasstt of data that describes a
facility’s history and operation. For instance, all faidds have some characteristic construction
time, some time at which they begin operating, some periogite time that describes the
length of their basic unit operation, and some time at whindyte decommissioned. These
and other data that apply to all facilities (though theiues may vary from subclass to subclass
and even from object to object instantiated from those sigsels) comprise the member data
of the facility class. Other important types of facility dahclude capacities, capacity factors,

and financial parameters.

3This table and others like it are not meant to provide an esthaulisting of every member in the facility
class definition, and neither will the entire source codeG&NIUSv2 be given in an appendix. (At present
time, the GENIUSV2 source code comprises more than 17,0@8,linot counting the Python pre- and post-
processors.) However, it is our intention that GENIUSv2 t&lable as open-source software, though we have
not yet settled on a distribution method. See the Computaltiduclear Engineering Research Group home page,
http://cnerg.engr.wisc.eduy, for current information.

http://cnerg.engr.wisc.edu

27

3.1.2.2 Material storage

We need not understand much about the GENIUSv2 materigdeda® understand that
facilities will need assorted data structures for keepiaghk of all the discrete material objects
they will pass between one another. These data structuneSecdivided into two types that
we’'ll call storage bufferandprocess linesThe latter are the easier to understand; they repre-
sent the materials currently being operated on by the fackior instance, materials stored in
the operating line at an enrichment plant can be thought beagy “in the cascade” of what-
ever sequential enrichment technology is employed at tadicplar facility. If we recall the
observation that a facility is a black box into which raw nmetis flow and out of which refined
products emerge, the process lines are the data strudbatdsold the relevant materials during

their time in the box.

Facility
=]
Upstream buffer Process lines Downstream buffer
(stocks) (inventory)

Figure 3.2 Anillustration of the two types of material-storage datastures in the GENIUSv2
facility classes. An upstream buffer called the stocks ¢daresmaterials that have
arrived at a facility but are not yet ready for processingc@®©a material has been
processed (during which time it is stored in the processs)ing can be sent to a
downstream buffer called the inventory.

On the other hand, a storage buffer can be thought of as atofief either raw materials
or processed materials that avaiting, respectively, to be processed at this facility or to be sent
along to the next one. In other words, buffers are the catlestof material piled up on either
end of the black box (see Figure 3.2). Under a “just in time'delpthese buffers would not
be necessary; however, they allow us to simulate the risksere(and sometimes decay heat

reduction) strategies practiced by real-world nucleat éyele facilities—facilities that, after

28

all, comprise an expensive and sometimes very time-seasitipply chain. Including buffers
in the facility design will allow GENIUSv2 developers andeus to investigate strategies for
ensuring system robustness through wise maintenance a€hadce on material buffers. We
hope that, once these procedures are better understopdatimée parameterized and included

in policy optimization studies.

3.1.2.3 Operational methods

Just as all facilities share common data, so too do they stwanenon methodsfor going
about their business as facilities. These methods incluateepures for beginning a cycle, sub-
mitting offers and requests for material, sending matéoia@ther facilities, receiving material
from other facilities, etc. Developers can decide whetHac#ity subclass should use the gen-
eral facility method for performing an action (for instanttee general methods for sending and
receiving material are likely sufficient for most subclagser to override the generic facility
behavior (methods foordering material likely depend on the specialized role of the facili

subclass, since that role determines the type and amourdtefial to be ordered).

4See Appendix A.

29

Table 3.1 Selections from the facility class definition. Function argaiseand some members
omitted for space or complexity reasons.

Member data

Declaration

Description

int ID

The unique identifier for this facility.

FacType myType

The type enumeration for this facility (i.e., MM for mine/mi
FF for fuel fab, etc.).

int constrTime

The time it takes to construct this facility, in months.

int lifeTime

The lifetime for which this facility can operate, in months.

int processTime

The time, in months, that it takes for this facility to contela
process cycle.

double capacity

The monthly capacity of this facility (units vary).

double capFactor

The capacity factor for this facility during this time step.

int startContr

The simulation time at which this facility started beinglbui

int startOp

The simulation time at which this facility started opergtin

int startCurrProc

The simulation time at which this facility started this aycl

deque<Materialx*> The buffer of materials present at this facility and waittode

stocks operated upon.

deque<Materialx*> The buffer of materials present at this facility and waittode

inventory sent elsewhere.

ProcessLine A complex data structure that stores the materials thidithacs

ordersExecuting operating on, along with information about the process.
Member functions

Declaration Description

void beginCycle()

Begins this facility’s next operational cycle, offering and
requesting new material, as appropriate.

void Sends material to a given facility, according to some set of
sendMaterial () instructions.

void Receives the given material, placing it on the stocks or uing
receiveMaterial () immediately, as appropriate.

void decommission()

Decommissions this facility.

30

3.1.3 The material classes

Before we discuss the facility subclasses, which perfornciapeed operations on mate-
rials, we need to introduce the classes from which thosermabtdbjects are instantiated. Per
the various GENIUS requirement review documents, we neddriabobjects to store enough
information so that after execution we can reconstruct twpdrtant data sets: the isotopic
history and the facility history of every material objecttive simulation. Because there can
easily be hundreds of thousands or even millions of matelipcts instantiated during large
simulations, it is important that they store this information efficigntDne obvious answer to
this challenge is to only record composition or locationadahen this informatiorthanges
We can further improve the data storage outlook by storinggried compositions sparsely—as
a map of isotope codes to the corresponding mass or numbé&srogainstead of as a vector
where each vector index corresponds to one isotope in atpredaed list to be tracked. The
vector-based approach would be slightly faster and easigotk with, but it detracts from the
code’s flexibility by committing to a hard-coded isotopd,lmsnd it unnecessarily stores large
numbers of zero entries (many simulation objects contaly @handful of isotopes).

An interesting tension emerges from the above design scirethe case of materials con-
taining non-stable isotopes. From a macroscopic point@ivsuch materials’ compositions
change continuously, which would seem to necessitate rmythonth radioactive decay cal-
culations. While such an approach is expensive but not pitotebn continuous-flow codes,
it's both in the case where we must perform the calculati@mi®n dozens of stocks and flows
but on the hundreds of thousands of discrete objects thatdéraerged from reactor cores and
thus contain dozens of radioactive constituents. To restilis tension, we observe that we
actually care about the composition of a given radioactiatemal at only a few points along
the back end of the fuel cyde Thus, we adopt aecay-on-demandtrategy. The material

class implements a method that first calculates the numbmoaths since it last recorded its

SFor example, in a simulation where 1,000 pressurized watgctors operate simultaneously, there will be
almost 200,000 GENIUS material objects stored in memorgpoasent just the fuel assemblies currently residing
in those reactors.

SFor instance, before shipping an object representing useldom on-site storage to a reprocessing plant
or off-site storage facility, a reactor may wish to calcal#hat fuel's instantaneous decay heat. Similarly, a

31

composition and then performs the calculation to simulaetsag over that number of months.
Although this approach still results in “dense” compogsittastories for materials residing in
“decay-sensitive” parts of the fuel cycle, it nevertheleffers significant performance gains
and allows the model to capture the important effects of yfec&ee the GENIUS source
code and documentation for specifics about the actual naalenethod used to perform de-
cay calculations, which was implemented and tested by UWiisten Computational Nuclear
Engineering Research Group (CNERG) member Kerry Dunn.

The other important piece of information stored by mateoigjects is theicommodity
type. We appeal here not to the rigorous economics definsi@mommodity but to something
closer to the operations research usage, which refers woreprograms (see 4.2) as being
eithersingle-or multi-commodity problems depending on whether flows on the ndtaos
of a single homogeneous material or multiple material typ&lse commodity enumeration
within GENIUSV2 is used throughout the code; most impotyaitis the mechanism by which
facilities specify the kinds of materials they wish to regiuieom or offer to one another. The
features of the material class discussed so far are sunedanzZlable 3.2.

The material class hierarchy currently includes a singéesized subclass whose purpose
is to represent fuedssembliesAssemblies are stored and passed between facilities aiadpe
custom containers calldzhtcheswhich of course correspond to the fuel batches that remactor
order to replace a subset of the assemblies within the caragdaach refueling cycle (see
Cochran and Tsoulfanidis, 1990). We track individual fuedeasblies within GENIUSV2 in
accordance with our desire to model the fuel cycle in as mthildas possible, but we ac-
knowledge that writing out the histories of each individaasembly (as opposed to the more

typical practice of writing out batch-wise histories) inases the size of the output dataset

fabricator of recycled fuel will wish to know the exact consgion of the material from which it constructs new
fuel assemblies.

"Juchau reported in his thesis that neither GENIUSv1 nor CABErform explicit radioactive decay cal-
culations. Alone among discrete-materials codes supmpttiis capability at the time were the French Atomic
Energy Commission’s COSI and Eric Schneider's Comprekerignysical and Economic Model of the Nuclear
Fuel Cycle (Juchau, 2008).

32

Table 3.2 Selections from the material class definition. Function argus@nd some members

omitted for space or complexity reasons.

Member data

Declaration Description
long ID The unique identifier for this material.
Commodity myType | Anenumeration representing the commodity type of this nedte
(yellowcake, enriched uranium hexafluoride, etc.).
CompHistory A complex data structure representing the complete isotopi
compHist history of this material. Implemented as a map that pairs the
times at which the composition changed with the new
composition at those times.
FacHistory A complex data structure representing the complete fgcilit
facHist history of this material. Implemented as a map that pairs the
times at which the location changed with a record of the
source and destination facility identifiers.

Member functions
Declaration Description
void changeComp() | Changes this material’'s current composition as specifieldan t
function arguments.

D

void logTrans() Logs a transfer of this material between two facilities.

void absorb() Absorbs the given material object into this one. Effeciivel
an addition operator for materials.

void extract() Extracts the contents of the given material object from dime.
Effectively a subtraction operator for materials.

void decay() Decays this material’'s composition for the number of months

since its last composition change.

by two to three orders of magnitude, with performance slowtoto match. Collecting as-
semblies into batches, which store aggregate data repiregehe sum of their constituent
assemblies’ composition histories and a single copy of t@lective location history, allows
GENIUS to support the user’s choice of either batch-wisessembly-wise output reporting.
As one might therefore expect, the assembly class (see I&@)lencludes only one additional
assembly-specific member, and the batch class (see Table&3 very much like the mate-
rial class, with the exception of a few specialized functi@and data structures for storing and

managing the assemblies themselves.

33

Table 3.3 Selections from the assembly class definition. Function argtsrend some mem-
bers omitted for space or complexity reasons.

Member data

Declaration

Description

[Inherited data]

See superclass (material) data, Table 3.2.

stack<pair<int, int> >

A stack that stores pairs comprising a batch number and the

batchTracking time when this assembly joined it.
Member functions
Declaration Description

[Inherited functions]

See superclass (material) functions, Table 3.2.

Table 3.4 Selections from the batch class definition. Function argumeamissome members
omitted for space or complexity reasons.

Member data

Declaration Description

long ID The unique identifier for this batch.

CompHistory Like the material class’s compHist, but summed over all the
compHist assemblies in this batch.

FacHistory Like material class’s facHist, but for the batch as a whole.
facHist

int numAssems

The number of assemblies in this batch.

FuelArray myFuel

A complex data structure that stores the assemblies in &tchb
as they might be arranged in a reactor core.

Member functions

Declaration

Description

void changeComp ()

Changes this batch’s current composition as specified in the
function arguments.

void logTrans()

Logs a transfer of this batch between two facilities.

void transmute()

Changes the composition of this batch and its assembliesler
to simulate irradiation in a reactor core.

3.1.4 The facility subclasses

The specialized behavior of most facility subclasses wyfaituitive given an overall un-

derstanding of fuel cycle operation (see Figure 1.1). Fstaince, most facilities have a spe-

cialized method for performing their particular procegsstep on a material object of the ap-

propriate type (mines haverdne () method, conversion facilities havecanvert () method,

and so on). In those cases where a specialized datum or sataofsdnecessary to support

34

subclass-specific operation, these are also data membires sdibclass. For instance, enrich-
ment plants include a data member representing the U-23&hement of their waste stredm
which at present is assigned by the user but could also beysatrdcally via feedback or an
optimization routine, as appropriate. More complete imfation about the GENIUSv2 facility
subclasses is available in the online code documentatitivef@t al., 2008), but the following
sections discuss the three most challenging and atypitalasses: the reactor, separations,
and repository classes.

Note briefly that the bulk of the methodological work perfeadifor this thesis is directed
toward getting these facilities to work together, not tadvaraximizing the performance or re-
alism of how any one particular type is modeled. Many of treuagptions and simplifications
that are generally deemed necessarily in fuel cycle systentss are present here as well. This
section aims only to explain the important detailsrentlyimplemented, in order to provide
the reader with enough background to place the results oft€hajm their proper perspective.
The means by which inter-facility cooperation is implensehis meant to be reasonably robust
to changes in the internal behavior of each facility typeu§;ithe shortcomings documented
in this section can be addressed as necessary without, weedyehajor code-wide disruption

in the future.

3.1.4.1 The reactor class

The reactor class is more complex than most facilities dilegmature of (1) the materials
that reactors operate on and (2) the burnup operation.itdéiereas most fuel cycle facilities
change the composition of single material objects accgrttinexplicit closed-form results,
reactors operate on batches of materials that emerge fractorecores with transmuted iso-
topic compositions that are difficult to predict. HandlingpBlem 1 is simple enough; Table
3.5 shows that the reactor class includes a specializecgsdine urrCore) and buffers
(batchStocks andbatchInventory) that store batches of material rather than individual

guanta. A thorough treatment of Problem 2, on the other hawdld require a thesis in

8The so-calledails fraction (see Benedict and Pigford, 1981).

35

and of itself. Thus, the discussion here is limited to defining the probkscribing how GE-
NIUSv2 implements the standard highly simplified solutiand referencing some promising

new work that could be incorporated into GENIUSv2 in the fatu

Table 3.5 Selections from the reactor class definition. Function argusnemd some members
omitted for space or complexity reasons.
Member data

Declaration Description

[Inherited data] See superclass (facility) data, Table 3.1.

queue<Batchx*> A buffer of batches present at this reactor and waiting touie p
batchStocks into the reactor core.

deque<Batch*> A buffer of batches present at this reactor and waiting todo s
batchInventory to separations or long-term storage.

queue<Batch*> The “process lines” for a reactor, namely, the core itself.
currCore

Member functions

Declaration Description

[Inherited functions] See superclass (facility) functions, Table 3.1.

void decommission() | Decommissions this reactor. Overrides the facility versb
this function in order to empty reactors’ extra buffers.

From our modular perspective of fuel cycle facilities asklaoxes that operate on material
objects (see Figure 3.2), our task is always to define a pueed, subject to reasonable
constraints imposed by the relevant chemistry or physidsahsform a set af/ feed material
composition vectors{C?"'}, into N output composition vector§C” .}, via some amount of

work, Z:
TZ({C‘l "'701']\714) = {Colutﬂ"'vcé:it} (3-1)

m’

Our hope is always that we can model this transformation hased-form equations of some
small number of variables and parameters andthedn help us measure the time the process
takes.

Let’s illustrate this procedure with a simple concrete eglan In the case of enrichment

plants, we are fortunate that a simple mass-balance denvatovides just the kind of equation

9Indeed, half of Yi's master’s thesis is devoted to formulas for transmutation modeling suitable for fuel
cycle systems analysis codes (2008).

36

we need, at least in the case where we can neglect all isotbpeisthan U-235 and U-238

If an enrichment plant is asked to produce a material objentaining P tons of uranium
enriched to a U-235 mass fraction ©f from a suitable feed material object of maSsand
U-235 mass fraction -, and if the user or an optimization routine assigns our glaoperate
with a tails fraction (waste stream enrichmeny) then the”;,, andC,,; vectors are completely
determined byP, F', thex’s, and the waste object mas®, = F' — P. Plus, the required facility

throughput can be calculated, in ton-SWU, as follows:

x
Z = P[(2x, — 1)109(1 —pxp)
Ty | Tp— Ty
1— xw)xf — T
Lf Lp — Ty

+ (22, — 1)log((3.2)

+ (225 — 1)log(

l—xs 2y — 24

If this job were the only one being processed at a given tineecowld then say that it would

Z
Z'month

require months to complete, wheeg,,.;;, is the monthly capacity of the plant.
Unfortunately, far from being completely determined byt $ew terms in a set of simple,
closed-form equations, the output isotopic vectors forrtaterials that emerge from irradia-
tion in a nuclear reactor vary widely and require expensamgutation via dedicated codes
many times more advanced than GENIUS. They depend difiafigran the power level of the
reactor, the neutron’s energy spectrum during operatimhn@any core-specific design param-
eters, some of which change significantly over the life ofdbee. Because systems analysis
codes are expected to model hundreds if not thousands ebreaver the course of the dozens
of core refueling cycles that occur during each one’s lifet] direct coupling to core physics
simulation codes is not computationally feasible—nor da&adly desire this level of detail in

a model of the system as a whole.

10A sensible assumption when dealing with non-recycled urani For recycled uranium, de la Garza’'s
matched R cascadmodel (1977) and Benedict and Pigford’s subsequent exter(4¢i981) are suitable. Un-
fortunately, they are a bit harder to implement, since ttaek la closed-form solution and must be computed
numerically.

37

The standard short-term solution in other codes has bemetetherecipe based approach.
Developers choose several representative reactor typlegeaform full core-physics calcula-
tions in each type for a number of typical fresh fuel composivectors, termethput recipes
representing the core as a whole. Each input recipe is paitbc correspondingutput recipe
extracted from the solution of the complete fuel irradiatemd transmutation problem. Thus,
reactors simulated in the code must choose from among tlilal@eganput recipes and must as-
sume reactor operation in accordance with the assumptiansieétermined the corresponding
output recipes.

The matter of somehow calculating the reactor’s work (ite2,power it produces) presents
an additional complication. The appropriate measure isbueup, the quantity of energy

produced per fuel mass, expressed in the units gigawa#i-gay metric ton of heavy metal

GWd
tHM*

and cannot be expressed as a simple linear function of ceiderece time. Thus, we include

However, this quantity also depends complexly on the neidetails of reactor operation

multiple input-output recipe pairs, each representingvargiresh fuel composition irradiated
to a given burnup. This scheme is illustrated in Figure 3iBgihe notation from Equation 3.1.
Such a scheme removes several important degrees of freaabreq@uires careful accounting
to produce strictly correct answers for power productiaor. tow, GENIUSV2 relies on a small
set of hard-coded recipes chosen for benchmarking purgese<hapter 5) and in one case
provided by a client. Let it suffice to say that, though thegs@anembers were omitted from
Table 3.4 for clarity, the batch class stores a recipe iflenso that itstransmute () method
can produce the correct output isotopics when batches areviesl from reactor cores. The
user assigns an appropriate choice of input and outputedoipthe fresh fuel each reactor
will order and the used fuel it will produce. This assignmiemplies ade factoburnup, which,
depending on the user’s care, may or may not be consistdnthétuser-assigned reactor cycle
times and power capacity. Eliminating this potential ingistency should be a top priority as
GENIUS development moves forward.

Promising research has been proceeding elsewhere to nimfyiegly solve the reactor

transmutation problem. Yi recently (2008) extended worlHgymann and Westfall (1998) to

38

Cl,Bu:d-S

out

|, Bu=44
out

" LBu=45
out
‘2 Eu=45
T uu out
Z=44
Wi
/Z =451
C3,3u=44 -4 C3

out in
C |, Bu=43
out
T g W 2, Bu=43
2= C .

B ————
C3,3u=44

ot

out

3, Bu=43
out

Figure 3.3 Schematic of the standard recipe-based transmutation thtatiads undergo in re-
actors, as currently implemented in GENIUSv2. Each input caitipa is mapped
to an output composition by assuming some characteristicupuwhen assigning
an in-out recipe pair to a reactor.

develop an algorithm suitable for fuel cycle systems analy@des, and Scopatz and Schneider
(2009) have an article in press describing a different naetkine or both of these approaches

may prove feasible for future adaptation for or direct agadion in GENIUSv2.

3.1.4.2 The separations class

While not as complex as reactor transmutation, the chemegabcessing operations pre-
sent in fuel cycles that employ used fuel recycling poselaraton-trivial modeling task. We
handle it in the GENIUSV2 separations class, instantiatioihwhich take in used fuel from
reactors and produce material objects that represent eitieéul feed materials for fabricators
of recycled fuel or waste materials destined for storagaspasal.

There is, of course, a large and growing literature on howouarreprocessing schemes
currently work and will work in the future. However, for sgsts modeling purposes we again

appeal to a “black-box” outlook in which we care mostly abthé composition vectors of

39

the output materials that emerge from the box. Thus, we imefe the common notion of a
matrix-based separation transformation that places savee fraction of each element from
the input stream into each of some set number of output seasrshown in Figure 3.4. Note
that, for each element, the sum of the stream-wise separagiefficients must sum to one
(which enforces conservation of mass), and that each isaibp given element is treated the

same (since we're representidgemicalprocesses, not physical ones).

Product and
waste streams
C(l)ut Ciut e Cgm
{—Aﬁ /—Aﬁ
Used fuel
from reactors cll 999 001 - 0 Each
Cg” .0005 0.9995 o 0 row
c, Cf'| 0005 09995 - 0 |}sums
- e e cen e 10
Cee 0 0999 one
cy 0 0 - .999
Nonsensical illustration data

Figure 3.4 Conceptual sketch of the reprocessing scheme currentlieimgnted in the sepa-
rations class’s main operation, which divides the matérgah incoming used fuel
into multiple outgoing product and waste streams. The sé@pasamatrix data are
stored aghemBook data structures that each represent the chemistry of ohe rea
world reprocessing scheme (see Table 3.6).

For now, GENIUSV2 supports four product streams—one foniura; one for plutonium
and any actinides designed, for non-proliferation purppse travel with it; and two avail-
able for arbitrary combinations of minor actinides. Theseans were chosen to maximize
the number of real-world reprocessing schemes the moddéd b@uadapted to represent and
to ensure that the streams would be useful for constructivayiaty of recycled fuel recipes.
However, at least as GENIUSv2 currently operates, it wootdie disruptive to change this de-
sign, since fabricators wishing to purchase recycled natgo not order from these separated

streams directly (see Section 4.4).

40

The data necessary to represent the matrix shown in Figliaag& stored in complex sparse
data structures callethemBooks. At least as currently proposed, separations plantskaky li
to be very large and will probably be expected to adapt tora¢ddferent separations schemes.
Thus, rather than assigning separations plants a stigieBook, we store the list of all the
possibilities (some of which are included in the code an@stiof which users will be able to
provide) as a statlé data member in the separations class. This design providesparations
plants in a simulation with access to the complete data;sesareh and testing progress, devel-
opers can implement an appropriate mechanism for helpuohigidual plants choose between
the various options at a given time. This static member aheraignificant data and functions

for the separations class are shown in Table 3.6.

Table 3.6 Selections from the separations class definition. Functiaumaegits and some mem-
bers omitted for space or complexity reasons.
Member data

Declaration Description

[Inherited data] See superclass (facility) data, Table 3.1.

StreamInventory | A buffer of material objects sorted according to the proditictam
separatedStreams | each object emerged from reprocessing as a part of.

static ChemLib A collection of ChemBook objects storing the data that describe

processData available separation schemes.
Member functions
Declaration Description

[Inherited functions]| See superclass (facility) functions, Table 3.1.
void separate() | Performs a month’s worth of reprocessing on material froim th
plant’s stocks, according to the current separation scheme

Another outstanding research question for GENIUS devesopédl be how handle the dis-
crete nature of the materials moving between a facility¥dvs and its process lines. In other
words, though we can think of a discrete material objecviagiat a facility as representing
a single shipment or lot of material, we need to figure out veiaiuld happen as (or perhaps
if) these materials get combined together for processirthofgh it probably applies to con-

version, enrichment, and fabrication plants as well, thissgion of material fungibility takes

1See Appendix A.

41

on added significance in the separations context. Batcheseaf fuel arriving from different
reactors (and possibly after different irradiation andage times) comprise the variety of the
vintner’s selection of grapes in Piet’s winery analogy (20@iscussed in Section 2.2.1. If we
completely homogenize all material in the black box, we dish some of that variety. If we
do not homogenize at all, we risk artificially augmenting iagiety by modeling separations
as a heavily batched process instead of a continuous onee @&lreecomputational concerns as
well, since the number of discrete separated material tdhyee can choose from to fill orders
for recycled fuel materials determines the size of the lipragram we use to formulate the
recipe approximation problem (see Section 4.4). For nowcha®mse avia mediaand effec-
tively homogenize feed stocks as they enter each month., Bags month we turn one large
material object (formed from all the used fuel we've recdiseace last month) int6 separated
objects, representing the total mass flow of each ofteeparation streamsahly the material

from our single object moved through the system.

3.1.4.3 The repository class

The GENIUSV2 repository class is not yet very sophisticabted we discuss it in some
detail here because it has the potential to robustly andofiesupport many types of future
analysis. At present, we treat repositories according éostmplistic mass-based load limit
model. Thus, the items of interest in the class definitior (Egble 3.7) relate to monitoring
and limiting the mass of material that enters.

The repository class is the only one whasgpacity member represents a cumulative
rather than monthly limit. A convenient side effect of méissed load limits is that they allow
the code to make decisions about future loading based omgke Sicalar quantity: the capacity
less the mass that has entered so far. If we're also willirgssume that the repository is non-
retrievable, then once we've incrementetksIn appropriately, we no longer care about the
materials that have entered the repository, and we canesabarselves of the burden of storing

them in memory for the remainder of the simulation. Thushmdurrent implementation, the

42

dumpMat () method records the mass of newly arrived materials eachimaond then deletes
themt2,

Table 3.7 Selections from the repository class definition. Function augnts and some mem-
bers omitted for space or complexity reasons.
Member data
Declaration Description
[Inherited data] See superclass (facility) data, Table 3.1.
double capacity | Inthe case of repositories, teamulativelimit on the mass of
material this facility can accommodate.

double massIn The mass of material that has been emplaced in this repgpsitor
Member functions

Declaration Description

[Inherited functions]| See superclass (facility) functions, Table 3.1.

void dumpMat () Deletes from memory all the materials currently in gw@cks.

The current implementation does not preclude studies ofrepasitory heat and radiotox-
icity loads change over time; as long as the code stores are€each material's composition
at emplacement, the sum of all materials’ contribution &sthloads can be reconstructed as a
post-processing step, if desired. However, if we wantedforee other repository load limits
dynamically, the repository class would need to change sdrae An obvious and useful ex-
tension of current capabilities that would still allainmpMat () to delete emplaced materials
outright would be to adopt Radel's methodology (2007) foraiyrcally converting material
composition to a characteristic repository length, basedhe three temperature limits that
also constrain allowable loadings. However, her work amdlithits themselves were based
on Yucca Mountain-specific heat transfer calculations aadlevnot be directly applicable for
modeling repositories at other sites.

Many possibilities for retrievable repository storagenamic load limiting, and other
repository modeling problems of interest become possfhieiare willing to sacrificesome

discrete-materials data and devise a means of modelingdteriad in the repository in a more

12The material class destructor (the function that gets datiedelete a material object) is written such that it
sends its history data to the bookkeeper just before dalefibus, deleting materials does not mean we lose their
associated records (see Section 3.2.2)

43

memory-efficient manner than simply storing millions ofatete material objects in mem-
ory. For instance, one can imagine that it might be desirabiecorporate some sense of the
geometry of a repository by modeling the contents of eadh @innel) in some aggregated

way.
3.2 Simulation machinery

Having thus described the component parts of the GENIUSgRdycle model, we move
now to the mechanisms by which we help those actors work lhegéh a coordinated simu-
lation. Pidd organizes his discussion of this aspect of sdite GENIUS (which are known
in the management science and operations research Iieegdiscrete event simulatiopsm
terms of asimulation clockthat moves time forward, agxecutivehat oversees entities’ coop-
eration, and aevent listthat records what happened (Pidd, 2003, p. 239-241). In GIEM2,

these functions are handled by the timer, manager, and bepkk, respectively.

3.2.1 Timer

Like it's predecessor, GENIUSv2 uses a one-month time stdych has been deemed
appropriate for capturing the appropriate level of detaimight at first seem as if a three- or
even six-month time step would be sufficiently small, siread+world reactors operate on 12-,
18-, or 24-month cycles in order to time their outages withgpring and fall nadirs in seasonal
energy demand curves. However, in the DF/DM paradigm whe'eevinterested, in part, in
fuel cycle supply chain robustness, it seems wise to divide tore finely. By choosing a
single month, we can model delays on roughly the order ofe¢hgth of a reactor refueling
and maintenance outage. The GENIUSv2 defaults are for aa0@h simulation that begins
in January, 2010, but non-standard durations and stars y&ar be given as command-line
arguments. The code converts all dates given in the inpubfiesystem where each month is
represented by an integer, with= 0 representing the start month.

Once the code has completed reading of the input file and reatisin of the model spec-

ified therein, the timer begins passing time-step messaggsetsimulation objects, two per

44

month. The mechanism for this advancement is as followsh Eanulation entity (regions,
institutions, and facilities) and the manager implementhoes calledhandleTick() and
handleTock(), each of which takes the single argument of an integer thvaisghe current
time. The timer invokes this method on the manager, whichriminvokes it on all the regions,
which in turn invoke it on their member institutions, etc. Mof the important business of a
time step is handled during the tick phase. For instance) ihatitution’s plan for building
new facilities indicates that it should begin constructoonone this month, it instantiates one
and adds it to its collection. Similarly, if it's time for adgity to begin a new operating cycle,
itShandleTick () function will invoke itsbeginCycle () function, which might set in motion
any number of actions including making requests and offargiaterial and performing char-
acteristic operations on the material it already has. Bexthesfirst task each entity performs
during the tick phase is to pass the tick on to whatever estitis responsible for, the final
entity to actually handle its assigned jobs is the managelfit Thus, by the end of the tick
phase, the manager is able to “take stock” of the system askewhhas received reports from
all the entities that currently want to be matched with a $eppr customer.

The first action that happens after the manage#isileTick () method returns and the
timer issues the tock is that the manager performs an agorior deciding on the set of ac-
tions the system should take and issuing the correspondstgictions—usually by invoking
theexecuteOrder () functions on the suppliers that it has matched to custon@mse these
instructions have all been issued and followed (that ispalierial transactions have been com-
pleted), the tock gets passed down the R-I-F hierarchy, acldl eatity performs the internal
bookkeeping tasks necessary to record what it did this moFitle main such task is record-
ing an entry in an internal capacity factor log; for instaiiesing our previous notation), if a
conversion facility with a monthly capacity ..., tons of uranium hexafluoride actually
converted onlyZ tons, then it records a capacity factorzefom.

The timer class, as well as the manager and bookkeeper, ptenmrented as singletéh

classes. The timer is an especially useful object to impiermethis way, because then any

13See Appendix A

45

object that needs to check the time—from within a functioat tthoesn’t take the time as an

argument, that is—can do so without having to store a reterémthe timer as a data member.

3.2.2 Bookkeeper

The bookkeeper class, tasked with recording the state ddithelation in an output file,
also takes good advantage of the features of the singlewgrdeattern; rather than forcing the
bookkeeper to somehow keep tabs on every single object sirtindation, we make sure that
each object can instead get in touch with the bookkeepefyimgf it of the important events
that need to be recorded. There’s no need to do so immediaftely those events, though.
Facilities and materials keep track of their own historieslthey’re deleted—either at the end
of the simulation or when the code decides they no longer teéeé tracked. Thus, when a
facility’s destructor is called, the last thing it does i tae bookkeeper'sriteFac () method,
which collects and writes out the information that needsedantluded in the output file (see
Section 3.3). A similar procedure applies for writing outteral location and composition
histories, and also those of the batches (if batch- rattear #ssembly-wise tracking has been
selected). Another attractive feature of this design isttiebookkeeper serves as a “wrapper”
around the interface that gets used to write the output filer@priately encapsulating the code
that depends on that interface. Thus, if future developroalté for the output file format to

change, only the code within the bookkeeper class needsreniten.

3.2.3 Manager

The manager has the most difficult job of any class in GENIUSV2estured toward
this job in the description of the timer: During the tick paathe manager collects informa-
tion about the needs of various entities throughout the oélethe beginning of the tock
phase, itsnatch () method attempts to identify the optimal routing for meetthgse needs

in accordance with the objectives of the fuel cycle systena aghole. Chapter 4 presents

46

optimization formulations for making these decisions, etause those methods are encapsu-
lated elsewhere, we're in a position now to describe thealvprocedures for the manager’s
data-collection and instruction-issuing tasks.

Figure 3.5, an extension of the fuel cycle model shown in EEdl1, illustrates how the
members of the R-I-F hierarchy participate in this procediitee mechanism for that partici-
pation is the passing @hessagefom entity to entity. When a facility has a product or service
to offer, or a request for the product or service of anotheilifg, it constructs an instantia-
tion of the message class and encodes the details of itsarffequest therein. The important
data included in a message are the commodity being offereehjoested, the amount of that
commodity available or required (a sign convention spexifieether the amount represents an
offer or request), and information about the entity sendirgmessage.

Although, as a singleton class, the manager is directlyhaale by all simulation objects,
we instead use the convention that messages get passedchigrttrehy and reach the manager
after being examined by the originating facility’s instian and region. We made this deci-
sion in the hope that as GENIUSv2’s R-I-F hierarchy becomaseriand more meaningful,
institutions or regions might modify messages based om e “wider view” of the state of
the hierarchy below them, perhaps even taking an activeinateatching customers to sup-
pliers. For instance, a vertically integrated instituttbat owns several different kinds of fuel
cycle facilities is less likely to seek outside supplierso@fmodities it is capable of producing
itself. Thus, it's conceivable that at some time we may wishifistitutions to intercept and
handle messages that are requests or offers for in-houseadities from the perspective of
that institution. The same methodology might be appliedegians. These methods might
be advantageous from a modeling-realism perspectivef bigd seems likely that they could
harm the system’s ability to seek out globally optimal solus; developers will need to take
great care in determining how to use them appropriately ¢f when they are implemented.
For now, we merely note that, in accordance with GENIUSvZsilile design philosophy,
the capability for this message interception techniquerésgnt in the model (at negligible

computational cost) and can be used if deemed appropriate.

a7

| Timer | Manager | Bookkeeper | ‘

Offers and

recuests
Instructions Institution lnstitution

Reprozessing ! | I
-
Fab

[nstitution

II

Fest Fued

@ Reactor
Reposikry
p——
Jriane

Institution Institution

|eac i |
a

Figure 3.5 Messages representing offers and requests get passedhiprtrehy for matching
during each time step. Future implementations may allowvitirigins or regions to
handle some matchings themselves, when appropriate. tAtiananager performs
the matching, it issues corresponding instructions to tippkers. Image adapted
from Wilson and Oliver (2007).

For now, though, all messages reach the manager. As thew attie manager sorts and
stores them by commodity and by whether they’re offers ouests. When it starts to match
them at the beginning of the tock phase, it does so in a veryifgperder. The need for the
order is related to a supply chain challenge caused by thheraéntioned problem of material
fungibility.

Some commodities, like yellowcake and unenriched uranierafiuoride, are highly fun-
gible; they have a predictable composition, and equal atsoofithese commodities can be
exchanged for one another without adverse consequences, Uiless we have a strong desire
to study the effects of variability of uranium ore qualitydatherefore to vary the composition
of yellowcakes from one mine to another, mines can makehleliand unambiguous mate-
rial offers by simply calculating the mass of yellowcaketirave on hand and only offering
that amount. Enrichment plants, on the other hand, cannké siach unambiguous offers of
material. The commodity they deal in is less fungible beeawdue is added continuously to

the uranium hexafluoride as it is enriched to higher and migh235 mass fractions; no one

48

would trade equal masses of uranium one for another if thdydifeerent enrichments. Thus,
without knowing something about the enrichment needs dffelmicators, there is no way for
an enrichment facility to offer a meaningful quantity of ma&l, as product; it doesn’t know
how much that product will need to be enriched.

Instead, we let suppliers of less fungible material ofienrvicegather tharproduct An en-
richer’s offer then specifies not the quantity of materiabibh make, which is under-determined,
but the amount of enrichment it can perform, which is fullyeenined by the plant’s capacity
less any outstanding commitments. Buyers of less fungibkemad on the other hand, spec-
ify the exact composition of the material they want—a totalssrand an enrichment, in the
case of uranium hexafluoride. The manager then bears therbofdranslating the quantity
given, in either the offer or the request, to reach a commaithiEt can serve as the basis for
determining supplies and demands and finding a desirablehmgt

This matching strategy has the following consequence: lmrppof front-end fuel cycle
services(enrichers and fabricators) may need to order feed mataftef being matched to
a customer. As an illustration, note that in order to minenilze logistical lag time that can
result from a reactor ordering enriched uranium oxide ftied, manager matches the relevant
commodities in this order: (1) fuel requests with fabrioatoffers, (2) enriched uranium hex-
afluoride requests with enrichment offers, and (3) uneedctiranium hexafluoride requests
with offers of same (the complete order is given in Table .3B)is way, if a fabricator does
not have suitable material on hand to construct a fuel batdéred by a reactor, it immediately
orders the enriched material it needs, and that order aravthe managdyeforethe manager
matches fabricators to enrichers. A similar procedure i&idihe enricher does not have suf-
ficient and suitable material to enrich. Any unmatched arder these non-fungible material
are stored by the manager, which re-attempts to match theimgdhe following time step.

The order of commodity-wise matching is just one of a numlig@roblems that we might
label fuel-cycle “tuning.” The goal of such tuning is to eresthat delays in material avail-

ability result only from cases where there is a legitimatal-weorld bottleneck or material

49

Table 3.8 Current manager order for matching fuel cycle codities.

Enumeration | Full name

eUoxFuel Enriched uranium oxide (LWR) fuel
uUoxFuel Unenriched uranium oxide (PHWR) fuel
moxFuel Mixed oxide (recycled) fuel

eUF6 Enriched uranium hexafluoride

uUF6 Unenriched uranium oxide fuel

cake Yellowcake (uranium ore, mostly;0x)
usedFuel Used fuel from all reactor types

shortfall, not from places where the behavior of the simolaentities or manager is insuffi-
ciently sophisticated to deliver the necessary materi@mwhis theoretically possible to do so.
Admittedly, tuning the fuel cycle’s behavior involves Hiiilg in various decision heuristics
about when and how facilities should offer or request goaukservices. | believe the long-
term goal of these tuning activities should be to identifg &aild in whatever decisions are
an absolute given in the real-world and to parameterizedbe requiring these parameters to
be user-specified or part of the future optimization engipalrameter space. For instance, if
we were to discover that the fuel cycle performs best whertleers and fabricators maintain
backup stocks of raw materials (perhaps guessing the syaimfis of future fuel orders based
on the distribution of past orders), then the exact amourt (& the case of the fabricator, the
enrichment) of backup material these facilities shouldrafit to maintain might be an input
parameter worth exploring.

| should be clear that, as currently implemented, the setetdudt facility and manager
behaviors that together determine the system behaviorssilple GENIUSv2 fuel cycles are
not very well tuned. In order to simply get all of the basic featiand functions desired for
GENIUSV2 in place (and to do so in a relatively straightfordvavay), | have tried to make
the simplest possible (and therefore often naive) choibesitehow facilities and the manager
behave. This is a necessary starting point for the more stgdtied modeling that can now

evolve as developers tune the structures that are in place.

50

3.2.4 Other classes

A few minor support classes exist in GENIUSv2 and have notbgein discussed. The
two most prominent are the solver wrapper and the input readech serve analogous roles
to the bookkeeper from an encapsulation perspective. 3usteabookkeeper is a GENIUS-
friendly interface to the software tool used for recordingput files, so is the solver wrapper a
simplified interface to the external solver technology GBNIuses for optimization problems.
This class will be discussed in the next chapter. Simildhg,input reader wraps around and
handles the parsing of the input file, constructing the sitthih’s initial condition as it does

so. | discuss it below.

3.3 Input/output infrastructure

As should now be obvious, a large and highly structured veloifrdata must be passed in
to GENIUS to describe a meaningful fuel-cycle scenario, am@&ven more challenging data
set needs to be returned by the code in a way amenable to meffimet-processing. Because
nuclear fuel cycle modeling is a fairly immature field (comgzhto core physics modeling and
other more physical problems that nuclear engineers hadgest for years), there are not yet
any standardized text or binary file representations fordyele input or output data. While
the GENIUS-specific model we present here is unlikely toffidittrole, my hope is that it can
serve as a possible model for how to take advantage of modemtiic computing resources
to robustly populate and visualize fuel cycle systems n&del

One natural way to capture both the hierarchical structtiteeodata needed for GENIUS
input (descriptions of the various regions, instituticansg facilities) and the transactional struc-
ture of its most important output data (material locatiostdries) is via a relational database
methodology. The popular SQLite database (SQLite Consorta008) is a natural choice be-
cause it requires little overhead; is highly stable, stagidad, and well tested; and is freely
available to anyone as open-source software. Moreoversiipported via a built-in interface

by the Python high-level programming language (Pythonvo# Foundation, 2006). Python

51

is another well supported and highly popular open-soureepeaing tool with extensive li-
braries for numerical and scientific computing. Myself atideo members of the GENIUSv2
development team have written and maintain adaptable prepast-processors that | expect
will continue to improve GENIUSv2 ease of use. These prangdsbraries themselves are
somewhat beyond the scope of this paper, but the design afggheand output file format it-
self is not. For more information about actually constmgtihese SQLite databases, including
some limited efforts to extract Juchau’s hard-coded GENtUBput data into a GENIUSv2-

compatible database, contact CNERG@ip: //cnerg. engr.wisc. edu.

3.3.1 Scenario specification

Conceptually, creating a GENIUSV2 input file requires spaaif (1) all the regions, insti-
tutions, and facilities in the model at the beginning of timewation (i.e., an initial condition),
(2) the static plans for when each institution should builtife facilities, (3) the parameters
of these generic future facilities, and (4) a set of rulexdbsg non-standard relationships
between members of the R-I-F hierarchy, if desired (see @edt2). The first two tasks are
accomplished by populating database tables ca@légd ons, Insts, andFacs; the third, by
populating table&FacParams; and the fourth, by populatingules. While these five tables are
likely to persist indefinitely, it has unfortunately been myperience that it is very hard to
stabilize the set of required columns in each table. When GENE “goes public, ” it will be
important for the development team to publish clear ingtons about which input parameters
are required for running a simulation with a given stableask. For instance, whenever devel-
opers add a new modeling parameter that needs to be spegifike bser, code must be added
to read this parameter from the appropriate column—codenttidikely need to complain if
a given input file does not contain that column.

A current listing of each table’s required columns is giverAppendix B, but a glance at
an actual example should sufficiently illustrate the odexpproach. Figure 3.6 shows screen

shots of several tables from a fairly simple input*fileThe most intuitive is the first, thgacs

)t's actually the real input file used for one of the demortstraproblems (see Section 5.1.2).

http://cnerg.engr.wisc.edu

52

table. We can see from the number of rows that this scenasiodas six initial facilities, and
the fourth and fifth columnsygarStartOp andmonthStart0p) tell us that all of them start
operation in January 1970. The second-to-last visiblemaolype) shows that they are all
front-end fuel cycle facilities (mine/mills, conversioanrichment, and fabrication), and the
fact that each will exist 1560 months (see ColumniZeTime) suggests this simulation is not
designed to model the detailed comings and goings of fudédgcilities with more realistic
lifetimes. Clearly, this is a simplified and idealized dentoaitson problem, at least from the
perspective of the fuel cycle support facilities.

But where are the reactors? Unfortunately, it’s difficultgth tor this problem, in which I've
chosen not to fully describe any “historical” reactors ie Hacs table. Reactors will be built;
we just can’t see where they are in the tables. While a databappealing for displaying and
perhaps even entering input information that is repre®dm@s text or as scalar values, vector
guantities present a slight complication, at least at filshge. But it turns out that SQLite
supports a data type called a blob, which is a simple chunknairip data. GENIUSv2 and its
pre- and post-processors all acknowledge a data conveuntistoring vectors of either integers
or double-precision values as a blob. These blobs can bedstoa single database column,
but they can’t be rendered by the database browser becalisé|bbs are just raw binary data.
The column labele®uild in the Insts table actually encodes complete sets of instructions
for how each institution should build certain future faio#ls at certain times. Weanactually
tell what each of these future facilities will look like byaxining theFacParams table. Since
there’s only one row defined, we know that all facilities buwiliring the the simulation will
be pressurized water reactors (we've named this model “GeR®R”) with the parameters
given in the subsequent columns.

An input reader object performs the tedious but straightfod task of reading through
each table and instantiating the various GENIUSv2 objestsdata structures necessary to
build the model described in the database. Because of theveethfficulties of writing C++
and Python code, and especially working with each langgagéerface for reading SQLite

databases, we let the input reader assume that the giverfilepsivalid, leaving the seemingly

53

Database Structure ‘ Browse Data I Execute SQL |

Table: =] @ New Record | Delete Record

1 1

lZ_ 2 2 DomConv 1970 1 60 1560 1 oper 1.0 10000.0 CONV
3 3 3/pomEnr 1970 1 60 1560 1oper = 1.0 10000.0 ENR
4 4 3/ DomFF 1970 1 60 1560 1oper = 1.0 10000.0 FF

5 5 6 ForMine 1970 1 60 1560 1 oper | 1.0 10000.0 MM |
6 6 6 ForConv 1970 1 60 1560 1loper | 1.0 10000.0 CONV

=T Egte '?@ owser - robust_case 7 Database Structure | iBrowse Data I Execute SOL |
Eile Edit View Help Table: | FacParams - @\ New Record | Delete Record
) pE it [cac]
D&M= e o o B[R —_ :
ID |type |name |I\feTlme |con5tr'ﬁme |cycie‘ﬂme |charCF |capacn:y |batche
Database Structure | Browse Data I Execute 5QL | 1 1 PWR Generic PWR 600 60 18 0.9 1000.0
Table: = @ New Recorc
instiD | reglD | name build
1 1 1| UsLikeRxnUL) oD
2 2 1 Domu
3 3 1 DomFuel
4 4 2 SmallClientRxnUtil c
5 5 3 MediumClientRxnUtil [1]
6 6 4 ForU
4l | 2l
| 1-1ofl Go to: 4]
YA
4] | |

|1-E|ofﬁ | Go to: |G

Figure 3.6 Partial views of a three tables from a sample GENIUSv2 inputM&e that vector
guantities can be stored as blobs that can be read by the codetorendered in
this database browser. See Appendix B for a complete descripteach table and
its columns.

endless task of input file validation to the pre-processanceXthe input reader has read all
the tables and created all the objects, the applicatiommtistes a timer that can handle a
simulation of the length and start time passed to the cod®@snand-line arguments. The

simulation then begins.

54

3.3.2 History recording

The output file for GENIUSV2 is a copy of the input databaselictvthe bookkeeper adds
extra tables and extra columns in the existing tables. Asudsed in Section 3.2.2, the oper-
ational history of facilities (the GENIUS time at which thbggan operating and their actual
capacity factors, by month, thereafter) and the locatiah@mposition histories of materials
gets sent to the bookkeeper just before these objects ateddétom memory. Recording the
facility output is very straightforward; for facilities & were explicitly specified in the original
input file (i.e., not part of a future build plan), we only netedadd the history information
to their entry, which already exists. These data go intoigpe€art0p andcapLog columns
that GENIUS adds to thBacs table. The latter column is again a specially formatted blob
representing a vector of doubles.

Material histories get spread across the two tables shovingure 3.7 MatFacHist and
MatIsoHist. Unsurprisingly, each of the transactions that the mdteg@orded about itself
during the simulation shows up as a rowMsitFacHist. Each row records the ID number of
the material that was transfered, the time the transfer pdaée, the integer identifiers of the
source and destination facility (tHfacIDs from theFacs table, of course), and a composition
identifier that links this row iMatFacHist to the row inMatIsoHist that stores the isotopic
composition at that particular time (another speciallyrfatted blob). For those times when a
material was “decayed on demand,” the entrjfanFacHist contains duplicate entries in the
fromFac andtoFac columns.

The navigation buttons near the bottom of each screen sHagime 3.7 show the number
of individual records in each table. Thus, we can see thaf#tefacilities in this simula-
tion (764 of them reactors) created and used materials titgrwent 55,850 discrete facility-
transfer or decay events and exhibited 92,260 isotopiestiduat were recorded. The total
output file size was 11.6 megabytes.

A couple of concluding remarks are called for here. Firsteribat, for the kinds of early
demonstration problems | discuss in this thesis, the dathese large output files is hugely

redundant. The 700+ identical reactors all eject idenbesthes of material characteristic of a

55

Eile Edit View Help
IDe & (= o = mf o[B[2
Database Structure | Browse Data I Execute SOL I
Table: |[EGEEAES =] @, New Record | Delete Record
matiD time fromFac toFac complD il
1
2 203 0 5 6 2
3 210 1 1 2 4
4 211 1 5 6 6
5 218 2 1 2 2
6 219 2. 5 6 10
7 226 3 1 2 12
8 227 3 5 6 14
9 234 4 1 2 16
10 235 4 5 6 18
11 242 5 1 2 20
12 243 5 5 6 22
13 254 6 1 2 24
14 250 B 6 3 26
15 251 6 6 3 27
e 372 - " 2 = H
1- 1000 of 55850 > Go to: 0
4

Er{e Edit View Help

IDeE> m e o 8]k

Database Structure | Browse Data I Execute 50L I

Table: | MatlsoHist b &I New Record | Delete Record
complD time comp il
=
2 1 1
3 2 0
4 3 1
B 4 1
6 5 2
% 6 1
8 7 2
9 8 2
10 9 3
11 10 2
12 11 3
13 12 3
14 13 4
15 14 3
" i a |
1-1000 of 92260 > Go to: o

Figure 3.7 Partial views of the two material history tables from a saanBENIUSv2 output
file. We can observe high level of detail in DF/DM modeling byingtthe large
number of records in each table. Recall that blob dé&dalsoHist’s comp column)
cannot be rendered by this browser but is present.

particular burnup value implied by the input and outputpesiassigned to the single generic
reactor type. And the same enrichment plant and fabric#icitity work together to fabricate
that same input recipe over, and over, and over. The impiatharg to remember is that what
looks like massively inefficient overkill now is appropest robust for larger, more detailed

and realistic problems, especially when the code is capaftéemulating arbitrary burnups.

56

Although writing to the database is a slow operation, thélyigetailed records of simulation
history data that this output design can accommodate issttygaison détreof DF/DM codes.
Second, let me also mention that this tabular scheme forriabkestories is a very com-
pact representation of a huge 4-D dataset whose axes arenthethe originating facilities,
the destination facilities, and the masses or number desisit each isotope. Although doing
S0 sometimes requires clever pre-collapsing of the datdgbe time the database is queried,
it is highly convenient to construct this 4-D array (or subs# it) when examining GENIUS
output data. Thus, we see that another advantage of the &Ryihon work flow is the exis-
tence of robust scientific and numerical tools for data maaipn, making it comparatively
simple to add sophisticated data analysis and visualizatpabilities to the GENIUSv2 post-
processor. This ease stands to benefit end users interestieshdard fuel cycle visualizations

but uncomfortable with the tricky task of extracting usefiibrmation from so large a data set.

3.4 Summary

This chapter described the design and implementation ofIGEN2, including its model
of the nuclear fuel cycle, the support machinery that hedpsimulation objects work together
and that record the results of this cooperation, and thastriucture for passing input to and
receiving output from the code itself. Central to the funaing of this design is the manager,
which receives messages regarding the state of supply andrikin the fuel cycle system
and issues instructions for matching customers to sugplMthat remains to be explained in

Chapter 4 are the mathematical formulations that goverretihnegching processes.

57

Chapter 4

Optimization formulations

Chapter 3 described the novel modeling capabilities andstokoftware design of GE-
NIUSv2. This chapter discusses the other main contribubiothis work, formulations for
some of the optimization problems either raised by or madeermoportant by the DF/DM
modeling paradigm.

Without venturing a precise formulation, we note first tHa purpose or objective of a
global nuclear fuel cycle from an optimization perspects/¢o come as close as possible to
meeting the electricity needs of each region for as low d tmsat as possible. Of course, a
tremendous amount of work is needed to make that definitiecige. For instance, we might
ask if the objective function should penalize overprodutif electricity, or how to factor in
costs associated with, say, nuclear waste disposal. Bubenry, if we believe that we can
turn the various aspects of fuel cycle system performanecosts, then some kind of cost-
minimizing optimization approach ought to be effectivedemtifying promising nuclear fuel
cycle designs.

However, implicit in our decision to try to tackle this opiation problem via discrete-
event simulatiohis the acknowledgement that an explicit form for fuel cygistem optimiza-
tion would be very challenging to identify, let alone solv&he system is highly complex,
comprised as it is of differentiated components (facsitithat depend elaborately on one an-

other, many of them operating nonlinearly on the matertedy process. Merely identifying a

LOf course, the decision to make GENIUS a discrete event aiionl was not based wholly (and perhaps
not even in part) on optimization considerations. Indekd,desire to perform direct simulation and to analyze
DF/DM data are the prime motivators and optimization a sdaonconcern.

58

self-consistent set of constraints to describe how theryss a whole operates (to say nothing
of constraints on how individual facilities may be deployeda daunting and quite possibly
fruitless undertaking. In a review of supply chain optinti@aa problems similar to our nu-
clear fuel cycle context, Vidal and Goetschalckx focus oredtinteger program formulations
(Vidal and Goetschalckx, 1997). These problems are NP-imageéneral (Gray et al., 1997),
and even techniques for solving well studied mixed integeggams with important applica-
tions are perhaps beyond the level of mathematical sop&igin and computational expense
appropriate for a code like GENIUS, at least for the time bein

Instead, we make a series of simplifying assumptions, teediiwhich suggests the frame-
work illustrated in Figure 4.1. We assume that, fgienfuel cycle design (including a facility
deployment plan and perhaps values of other important peteasmdescribing those facilities
and how they work together), there exists some optimal manduting materials through the
system over the duration of the simulation. Such a plan wiillimize the cost of operating the
fuel cycle, including possible contributions from the penag cost of under-producing the
specified amount of electricity in each region. The ultimtagk of the simulation manager’s
matching efforts is to solve this materials routing probl@aiRP). In fact, it's not unreasonable
to think of the course of normal GENIUSv2 operation as idgimtg, simulating, and record-
ing the material flows and facility operation histories tbatrespond to an MRP solution for a
given fuel cycle scenario. Future developers can then attearsolve the outer fuel cycle de-
sign problem (FDP) iteratively via optimization toolkitsat search the input decision space
Most of the remaining simplifications we will make relate mahwe solve the MRP itself and

are discussed in Section 4.2.

2This nested “division of computational labor” is not unlifemiliar approaches to other optimization prob-
lems of interest to nuclear engineers, especially pin |ph&ce in reactor core engineering. The main difference
is that, in this context, the “inner simulation” itself alswludes an optimization problem (as opposed to the core
physics radiation transport problems solved repeatediyahmore typical example).

59

iGENIUSv2

n
|
|

Fuel cycle
Design
Problem

Material

|

|
|

|
| Routing |
|

|
|

|
|

Figure 4.1 Decomposition of the task of fuel cycle optimization into esijn problem to be
solved iteratively (and externally) and a routing problembe solved during the
simulation.

4.1 Linear and network flow programming

We choose as our optimization strategy for solving the MRPtas&®rmulations from
network flow program (NFP) theory. Network optimization pkems adopt fairly naturally to
our fuel cycle context because they too are concerned watlilolv of material from sources
(in our case, suppliers) to sinks (customers). This sed@mwes as an introduction to NFPs,
since they are likely unfamiliar to a nuclear engineerindience. However, because network
programs are a special case of more general optimizatidsiggns known as linear programs
(LPs), and because we use these more general methods ingeakbther fuel cycle optimiza-
tion problem, we first introduce them.

A linear program is an optimization problem where we wish iaimize or maximize a
linear objective functiorof some vector, subject to a set of linear constraint eqoatan its

components. Using the LP notation of Ferris, Mangasariaa Veright (2008), we first define

60

the variables: as the following column vector of non-negative components:

T

Z
We can then define a constraint-equation coefficient mattixa constraint-equation right-

hand-side vectoh, and a set of objective-function coefficientslike so:

Ay o Ay by b1

Akl Akl bk Y%

If we call the objective function value, then one possible way to state the LP is

. T
min, z=pux

(4.1)
subject to Az <b, x>0

where the superscrifif indicates the transpose operator. Ferris and colleagueshmt prob-
lems with any linear objective function subject to a systétmear constraints (including ones
where ther components are not necessarily non-negative or the cartsteae given as strict
equalities or some combination of the,"” “ >, ” or “=" operators) can be expressed in this
form via a series of standard transformations (2008, p. 9).

Not all linear programs have an optimal solution. First, @gbem can bénfeasible which
happens when the region of-space that satisfies all the constraints, the so-cddladible
region is null. Sometimes infeasibility is easy to spot, as in wkeparate inconsistent con-
straints exist on a single variable (for instaneg > 0 andxzy, < —3). But for large constraint
sets of many variables, infeasibilities can easily escagésaotice, so it's important that solu-
tion algorithms know how to check for them along the way. $eican LP can benbounded
which means the feasible region is infinite along a directi@t causes the objective function
to increase or decrease (for maximization and minimizapmblems, respectively), which
meansz can be arbitrary large or small and hence no optimal valust®xiAgain, solution

algorithms must recognize this behavior.

61

The possibility of a highly simplified sketch like this onetwithstanding, LPs are well
studied problems with a rich theoretical underpinning astalist solution algorithms for large
problems. These algorithms include the classimplex methoénd a number of newer and
sometimes faster methods and are implemented in a wide raingelver software. The
proprietary CPLEX solver (ILOG, 2008) is the gold-standdrdt well maintained and high-
performing open-source solvers exist as well. These ircthd COIN-OR project’'s CLP li-
brary (2007), which GENIUSv2 currently uses to solve LPs.

The generality of Equation 4.1 hints at the ease with whichk t&h be adapted to a variety
of specialized optimization and modeling contexts. Oftiwese more specific formulations
have given rise to sophisticated literatures of their owd aolution methods with greatly
improved performance. Linear network flow programs are argh €xample, a sort of lin-
ear programming-meets-graph theory subfield useful foretiog problems where fluid, data,
goods, traffic, or decision-logic flow fromource nodeso sink nodeghrough a network of
arcs (and possibly som&ansshipment nodethat neither produce nor remove flow). Figure

4.2 shows a simple four-node, four-arc network with two searand two sinks.

Sources Sinks

Figure 4.2 A very simple linear network with two sources and two sinksnitJlow on the
diagonal arcs is more expensive than on the horizontal ones.

Using the notation from Bertsekas (1998), we describe afinetwork program in terms

of its node setV and its arc sed. Each node € N has an associatetdivergence s;, a

62

net in- or out-flow that is positive for sources, negative dmks, and zero for transshipment
nodes. Each arc iA has a unit flow cost,;;, and a range of valid flow value@,;, ¢;;]. Thus,
the constraints for this NFP are that the flayy on each ards, j) is within its flow bounds

(Equation 4.2) and that the divergence constraint at eadf rsosatisfied (Equation 4.3):

zij € [bij, ci5]V(i,) € A (4.2)
Z Tij — Z Tji = Si,Vi eN (43)
Jl(ij)eA il(Gi)eA

(Note immediately tha} _._, s; = 0is a necessary condition for feasibility; this is an impotta
consideration when modeling practical problems in whiakreéhis no guarantee that supply
equals demand.) The objective in a minimum cost network floxblem is to satisfy the flow
constraints while minimizing the total cost of the floy, ; ;. 4 a;;z;;. Thus, the complete

formulation is given by Equation 4.4:

minm E Q555

(i,j)€A
subject to xij € [bij, 5], V(i,5) € A (4.4)
Z Tij — Z T i :Si,\V/iGN

jl@.5)eA Jl(Gi)eA

Careful examination of Equation 4.4 reveals that it is indaexpecial case of Equation
4.1. However, it turns out that the matrikin Equation 4.1 has a special structure for network
flow programs, a structure that can be exploited to greathpbiy the solution methods for
these problems. Thus, they can be solved vianitevorksimplex method or other specialized
algorithms, which Chinneck reports can be hundreds of tim&tef than the normal LP simplex
method (2007). The CLP library includes mechanisms for takiartial advantage of network
problems’ special structure, but it does not implement bffetiged network simplex method
(Forrest et al., 2004). However, the network programs weeatdlly solve in GENIUS are not

unreasonably expensive even when solved with standarddbiddéogy.

63

4.2 Materials routing problem: Formulation

While it is easy to intuit the usefulness of network formuwas for solving the GENIUSv2
MRP, two major difficulties bar us from modeling the nuclealfaycle with Equation 4.4 di-
rectly. The firstis that this standard form is meant for thealbedsingle-commoditproblem.
All the flows z;; must be in some sense homogeneous; a single cost and pawdfdlonds
must apply to all the flow on a single arc, and the divergenéssurces and sinks must mea-
sure the production and removal of the same basic matetizeeims unlikely that a useful
formulation exists for modeling the nuclear fuel cycle wétisingle-commodity network flow
problem; even if we overlook:.c? losses in the reactors and pretend that total mass is causerv
(which would allow the flow conservation constraint in Eqoat4.4 to apply throughout the
network), the fuel cycle materials flowing through the vag®ectors of the fuel cycle are too
heterogeneous to expect a single-commodity, “one-massdfitformulation to be useful. We
simply care too much about the differences between magenatlifferent parts of the fuel
cycle (their chemical and physical form, their isotopic g@msition, enrichment and criticality
profiles, etc.) to ignore their differences, and we mustdfwe treat yellowcake, enriched
uranium hexafluoride, fabricated fuel, various waste stieatc. as distinct commodities.

Unfortunately, multi-commodity NFPs are much more genaral complex. In anV/-

commodity problem, we solve for the total flow vector

subject to commodity-wise flow constraints,
Z xi;(m) — Z zj;(m) =s;(m),Yie N,m=1,..., M,
jlG.g5)eA JlGi)eA
and another constraint seX;, “which may encode special restrictions for the various €om
modities” (Bertsekas, 1998, p. 350). The latter constramtsanalogous to the flow bounds
(Equation 4.2) in the single-commodity form, but they canntniéch more general because,
in addition to bounding the flows ahdividual commodities on a given arc, they can spec-

ify the nature and size of varioumpoundflows on that arc by bounding sums of several

64

commodities. For instance, a limit on the amount of enricmederial that can pass between
two points could be implemented as a bound on a linear cortibmaf the flows of enriched
uranium, fresh fuel, used fuel, etc., but not of yellowcakeenriched uranium, or separated
fission products. Thus, the general form of the multi-comityqatoblem is given by Equation

4.5:

min, f(x)
subject to reX
(4.5)
> ay(m) - zji(m) = si(m),
Jli,g)eA il(Gi)eA

Vie Ny m=1,....M

Strictly speaking, this is probably the most appropriatePNér the network formed by
the facilities of the nuclear fuel cycle. But consider theunatof the commodity-wise flows
between fuel cycle facilities. Note that if we choose twoitaaby fuel cycle facilities, we
know that either no arc will connect them (mines send no ratdirectly to reactors, for
instance) or, if an arc does exist, we know precisely whiaig(e) commodity will flow on it
(for example, the only material that will travel from a corsien plant to an enrichment plant
is unenriched uranium hexafluoride). The only exceptiohésdase of a facility that sends two
different types of waste to the repository; | will addres®itaon the unique challenges posed
by the repository.

The highly simplifying effects of the observation in the yiceis paragraph allow us to
derive a more practical formulation of the routing probléife can reduce the very difficult/ -
commodity problem td/ single commodity problems if we first show that both the cansts
and the objective function in our application are separahlkwe then decompose the sdts
and N in accordance with that separability to arriveMdtseparate networks. Of course, we
could simply have assertedpriori the applicability of Equation 4.4 to the network formed by
the buyers and sellers of each fuel cycle commodity and skipbis discussion entirely. But
since we have an eye toward global optimization, and sineéul cycle as a whole is clearly

a multi-commodity system, it's worth stepping through #esmplifications explicitly so we

65

can have some confidence that the decision to use LP teclynahabsolve single-commodity
problems does not necessarily put us any further from ourtaaégoal than if we’d used more
sophisticated multi-commodity methods.

First of all, note that our fuel cycle system satisfies thedtitons of what Bertsekas calls
theseparablanulti-commodity problem (1998, p. 350). The constraintssseparable because
the flow of commoditym on arc(i, j) cannot be constrained by the flow of commodity
on that same arc if the nature of the facilities associate¢l ivand j; and the functioning of
the network as a whole are such that no commodity other thamould ever flow or{s, j).
Similarly, this behavior is more than sufficient to ensure déipplicability of the cost function

given in the following formulation of the separable problem

miny > Filyi)
(i,5)eA
subject to zij(m) € Xiy;(m),m=1,..., M
Z xl](m) o Z I]l(m) - Si(m)7 (46)
Jli.5)eA JlGH)eA

Vie Ny m=1,....M

M
Yij = Zl’ij<m)a V(i,j) € A

m=1

Again, if our observation about realistic flows in the fuekleyis true, than only a single
commodity will ever flow on each ar@, j). Thus, there is only one term in the summation
defining each total flow,;, so we can defing;;(y;;) to simply equak;;v;;, wherea,;; is an
appropriate arc cost for the flow of that single, predictaiolenmodity on argi, j).

Finally, letV,, andA,, be the commodity-specific node and arc sets. For instananwh
represents mixed-oxide fuel, the nodes\in are MOX fuel fabricators and MOX fuel-powered

reactors, and the arcs i, are the possible links between those fabricators and neadi¢e

66

can use the subsets to specify the terms from Equation 4.@rihya out under this assumption:

;

zij(m) =
0 if (i,7) ¢ An
[bij, cij] 1f (i,7) € Am
Xij(m) =
0 if (i,7) ¢ An
S; |f 1€ Nm
si(m) =
0 ifi¢ N,
Q555 if (Z,]) c Am
Yij =
0 if (¢,7) ¢ Am

\

With these definitions in place, we can rewrite Equation dré&(separable problem) as Equa-
tion 4.7 (M distinctproblems):

Yme {1,2,...,M}:

min E Q555

(Zvj)eAm
subject to zij € [bij, cij, V(i,7) € A, (4.7)
Z Tij — Z Ty = Si,V’i € Nm

Jl@5)€Am IG5 EAm
So far, we've turned the nuclear fuel cycle inté separate networks. Except at the ex-

treme ends of the fuel cycle, each facility serves as a sowde in each network correspond-
ing to that facility’sinventory materials and a sink node in each network corresponding to
its stocks materials. But even with this notion (and Equation 4.7) indjame don’t have a
complete MRP solution strategy. We've handled the part oftkiéing problem caused by the
discretefacilities, but we've yet to handle the fact that the flows themselvest ineigliscrete
because we modehaterialsdiscretely as well. For most facilities, we cannot simplyntu

monthly capacities into static and continuous supply andaiel data for setting divergences

67

because actual supply and demand will depend on the montietoh status of various facil-

ities’ needs—needs that will be met by discrete shipmentaaikrial during the time of that

need. In other words, we need to choogeree horizon a period over which the networks we
construct will be truly representative of the dynamic ssatéithe facilities that comprise the
various commodity-wise node sets.

Consistent with the pattern of identifying simple stratsdiest and working toward more
complex ones, I've implemented a naive formulation with shertest-possible time horizon;
each monththe manager (with the help of the solver wrapper) consdtraod solves an LP
formulation of the network problem for each of the commagditior which there is currently
supply or demand. Offers of materials or services get tumtdsources; the quantity given
in the offer message becomes the (positive) divergence \ailthe node the supplier facility
represents. Similarly, requests for materials or servgmsturned into sinks; the quantity
given in the request message becomes the (negative) diaergalue of the node the customer
facility represents The solution to the NFP then represents a set of matchesbfegtomer
request to a specific supplier’s offer, and the manager ssgistructions for the suppliers to
execute orders according to the nonzero mass flayysin that solution. A discrete material
object representing the matched order then gets constrapigropriately by the supplier and

shipped to the customer.

4.3 Materials routing problem: Discussion and modeling detas

This approach represents a credible if not completely agsfirst-step toward global op-
timization of GENIUSv2 material flows. Although the objesifunction does not calculate
system-wide electricity costs explicitly, we can think bfst formulation as minimizing the

cost of providing all reactors with the materials they nemdperate at capacity When we

3Strictly speaking then, we note that while source nodesessmt an entire facility making an offer based on
its full capacity, a customer facility can be representeddyeral sink nodes, since each request gets turned into
a node and a customer can file multiple requests in the sam#mon

4This description would be even more accurate if the uranitinesiand conversion plants operated only in
response to orders that had resulted, directly or indireithm reactor fuel orders. That's already how enrich-
ment and fabrication plants, which currently do no “exti@ue work, operate. We currently allow mines and

68

do not wish to penalize the overproduction of electricitysmnulate scenarios where material
costs are so high that it is advantageous to allow reactosg tdle, minimizing the cost of
keeping the reactor fleets as well fueled as possible is amabte approximation to minimiz-
ing electricity costs explicitly. For cases where these ¢taasiderationare important, we may
still be able to choose arc costs that capture the desiredteffOtherwise, we might need to
develop an entirely new (and probably much more sophistia¥IRP approach.

There are two additional drawbacks to the approach outlaiexe. First, this approach
is naive—it carries the assumption that whenever demargisexi should be satisfied at the
currenttime if at all possible. Because offers and requests arriva month-to-month basis,
clearing them on that same timescale is the most straigtdfor option. However, while we
almost certainly do not want reactors to sit idle for extehgeriods of time, there may be
cases where the manager would do well to allow a short delaydar to secure a cheaper
upstream supply chain. This approach is not sophisticatedgh to identify those situations.
We can attempt to address this problem going forward by clyeghifting offer and request
times earlier and establishing a system for lumping manyth®mvorth of capacity together,
allowing us to solve the flow problems for longer time horigo®©f course, the instructions
inherent in the network solutions would then need to be gppately “amortized” over that
same number of months.

Second, the decision to continually reconstruct, solvd,discard the mathematical repre-
sentation of the various NFPs is potentially inefficienpessally the current one-month time
horizon. An interesting area for future work is to examindakimetworks change very little
from solution to solution and somehow take advantage ofstfadility to eliminate redundancy
in problem setup and iteration to solution. For instancecad begin by checking the op-

timality of the previous solution each time we need to solvew problem that includes the

conversion plants to operate at capacity in the absencevaigstceam demand so they can build up reserves of
material, since most of the scenarios we're interested idatiog involve reactor fleet expansion that eventually
results in high material demand.

69

same nodes as in that previous problem. Similarly, accgrttirthe CLP User Guide, the li-
brary can be easily extended in order to create dynamicxriagsiances for applications where
the problem structure evolves over time (2004).
Thus, we simply note that we can’t claim to have solved the MBtihlly without either

(1) an objective function that explicitly calculates anchimizes the system cost of electric-
ity or (2) a derivation that shows how some form of the flowtaogimizing approach can
guarantee minimum electricity production costs. Howelarthe time being we can take full
advantage of the reasonable system currently in place th twarard other important aspects

of the modeling work GENIUS is intended for.

4.3.1 Affinity-based arc costs and interaction rules

We have so far discussed them of our network flow models of the fuel cycle but only
some of the problendatafor those NFPs. The source and sink nodes and their diveegenc
are determined from the offers and requests that the manaegeives at each time step. But
how do we determine the flow bounds and arc costs? Well, thmoedbphysical analog to
flow bounds in our system are the constraints (technicaloarrégulatory) imposed by the
various rail and highway transportation networks that emtrdifferent facilities. Although
we have not explicitly implemented flow-bound constraintghes time (except to say that the
flows must be nonnegative) doing so is now nearly trivial fooding perspective and merely
requires modelers to choose appropriate bounding values.

More interesting for the time being is the choice of arc cdBecause the form of Equation
4.7 seeks to minimize the total cost of the flow of each comtygpthe time-step-wise MRP
solution can be very sensitive to our choice of these cosesefVision that future versions of
GENIUSV2 will include sophisticated economics moduleg tizan choose arc costs via some
appropriate combination of (1) the R-I-F “identity” of thedes they connect, (2) tabulated data
representing real-world or user-provided costs (or cadtidutions) for the various commodi-
ties, such as are available in tAdvanced Fuel Cycle Cost Baseport (Shropshire, 2007), (3)

long-term contracts and other real-world cooperation rapidms that can be modeled more

70

or less directly, and (4) accounting-based approaches#tatosts dynamically according to
the financial and cash-flow situation of the supplier

In describing the arc-cost system currently in place, leagan emphasize that the strength
of GENIUSV2 is not that it currently accomplishes anythirgywsophisticated but that its
data structures and encapsulated design sets it up to bduh ties¢ bed going forward. As
the manager and solver wrapper construct the NFP used ferndieing each commodity’s
routing, they need only make a single function call to deteenthe cost of each arc. What
goes on in that function call can eventually be as complex @need, perhaps comprising
some aspect of each of items (1)-(4) above. For now, theetalins what we term aaffinity.

The affinity-based costing mechanism is our simplified wagllwiving the user to specify
complex sets of behavior for material trade within the R-li€rérchy. A high affinity for
trade between two facilities results in a low cost on the ammecting them, and vice versa.
For now, the affinity scale ranges from zero to ten, with sgdmehavior corresponding to the
extreme ends of the scale. If two facilities have a tradeiffof zero for a given commodity,
the manager will not even construct an arc between them wdténgup the routing problem;
if their affinity is ten, then the supplier will automaticalbe instructed to fill the customer’s
request before the network is even built.

Affinities are determined by a collection afles Specified in the input file, a rule manu-
ally sets the affinity for trade of a given commodity (or cotien of commodities) between a
supplier region, institution, or facility and a customegiaa, institution, or facility. If desired,
a start and end date for the rule can also be specified. Thegmasi@res the interaction rules
for the simulation in itRuleBook, which enforces a consistent precedence convention ahd wil
return the affinity between any two facilities subject to $le¢ of rules that currently applies. If
no rule does, theuleBook returns a default affinity based on the R-I-F set-theoretitsitity

of the would-be customer and supplier. These default aéfidre given in Table 4.1.

5This final approach most resembles the basic mass-flowfeagtmodel proposed by Jain and Wilson (2006,
Fig. 1).

71

Table 4.1 Default trade affinities for determining arc costs

Customer-supplier relationship Affinity
Both are facilities owned by the same institution 8.0
Facilities are owned by different institutions in same oegi 5.0
Facilities are in different regions 2.0

Even this relatively simple system provides the means éhilyidescribing patterns of fuel
cycle system behavior because the idea of affinities is mgéaribut flexible. For instance,
we may make the modeling decision that an internationalaratpn can be represented by a
series of distinct institutions in each region with a rulatteays the affinities for trade between
each of them are equivalent to if they were all a single instih. Similarly, we might represent
a long-term trade agreement between a fuel cycle region anstamer region via a time-
varying mutual affinity that is set appropriately high thgbout the duration of the agreement.
Much of the content of the following results chapter inveh\demonstrating the GENIUSv2

R-I-F matching capabilities.

4.3.2 Feasibility and fungibility

With appropriate arc costs in place, two final concerns ranf@ modeling the network
for some commodityn. The first is that supply of commodity,: may outstrip demand, or
vice versa. As | mentioned above, such is very likely to bedase for each commodity at
each time step in realistic problems, so we must take measoir@iminate this fundamental
source of infeasibility. Fortunately, a standard approexists; we add an artificial source
or sink to each network that provides the necessary supptiesrand to guarantee that the
divergences sum to zero. Flow on the artificial arcs (to whighassign appropriately high
costs to prevent their being used except when necessarygramed when the manager and
solver wrapper translate the NFP solution into a set of ucsibns; however, because these
artificial flows effectively measure unmet demand or unusgnply, these values will likely be

a useful metric for assessing a given fuel cycle design. Thadian of these artificial arcs and

72

nodes completes our schematic picture of the network GENd&ttructs at each time step

for each commodity. This schematic is shown in Figure 4.3.

Sources Sinks

\“\\ 555 Artificial

@ source

" 388

Artificial $58 . 4

sink o
P
\\
.
N
N
N
N

$$8

Figure 4.3 Schematic of single-commodity network for GENIUSv2 materaiting. Inexpen-
sive arcs connect facilities with a higher affinity for tradexpensive arcs connect
real facilities to artificial ones and are added to guaranteklem feasibility. Image
adapted from Oliver et al. (2009).

We deal with flows of infungible material like enriched unami by letting suppliers offer
services and customers order material. Thus, an enrichieesyaa offer based on its available
capacity (in tons-SWU) and a fabricator makes a request basélde exact enrichment and
total mass it requires to construct a given fuel recipe. Theager then converts that request
into a matchable quantity in tons-SWU by calculating how meohchment capacity would
be required to produce the requested material. Now the s@urg sink divergences have the
same units and can be matched in the given way. Similarlyparagons plant makes an offer
of how much total mass of some recycled fuel material it wdldble to provide (separated
mixed oxides, say). The fuel fabricator orders that commyoaiccording to an exact recipe,
which the manager converts to a total mass and matches dpetbiat(see Section 4.4 below).

If, as in the case of fuel orders, we do not want requests fongible materials to be spread
across two different suppliers, we can manually check thP Blution and refile any orders
that were split, printing a warning when this less-tharaldgtuation occurs. We discuss a few
more satisfying approaches to this formulation problem imglér 6's outline of important

future work.

73

4.3.3 Flows to the repository

It's perhaps appropriate that the final lingering challemge address is the problem of
nuclear waste and how to get it to repositories. As | mentaai®ove, the repository class is
unique in that each non-repository in the fuel cycle maytgaotry) wish to send material there.
In fact, each may (again, in theory) wish to send multiple cwdities there. Thus, the arcs that
connect those facilities to repositories appear to viabateseparability assumptions, as does
the notion that the repository (modeled as a sink node withgesnegative divergence) can
accommodate multiple commaodities. We can easily defingotioislem away for once-through
scenarios with mass-limited repositories; simply trehtvalste forms as a single commodity
(call it waste), and let the repository request a mass of waste each mattdls not exceed
its remaining capacity. We can generalize this scheme tgthelbased repositories using a
mass-to-length conversion similar to Radel’s (2007).

Closed fuel cycles present a bigger challenge; we can’t hemag waste as above if two
different facilities (repositories and separations @amire interested in some types of waste
(used fuel) but not all types. Moreover, it's unclear how wakthe “competition” between
these two “customer” facilities fair and meaningful. Olwsty, the case of the repository
strains our model a bit, and so we are forced again to assigiisdastory treatment to the
future work queue. For now, the best we can do is name useddleetlistinct commodity and
have separations plants request it and repositories regliesher types of waste, including
any un-recyclable wastes that emerge from separationshér words, we must temporarily
assume closed fuel cycles in which all waste ttet berecycledis recycled. Careful and
creative thinking should yield a mechanism for commodifyand measuring waste in ways
that support modeling of the repositories via the “reak&stassumption that forces waste
producers to compete for repository space and thus ingeesiveprocessing (see Radel (2007),
Grady (2008)).

74

4.4 Recipe approximation problem

We transition now to another reprocessing-related modelhallenge, the so-called “win-
ery” issue that | renamed the recipe approximation problBAR) when | introduced it in
Section 2.2.1. Unlike the materials routing problem, the R&\Rot unique to DF/DM codes,
but our discrete paradigm does raise some additional qusséibout how to solve it. These
were introduced in Section 3.1.4.2 and are related to thessef fungibility that arise when
modeling continuous processes with discrete materials.

Whatever size is eventually deemed appropriate for the gooé the various streams of
reprocessed material at a separations plant, we will cah ef these collections a “barrel.”
For our purposes in solving the RAP, the only necessary agsums@bout them are that the
material within a barrel is homogeneous and that, while etifva of the material in a bar-
rel can be removed for inclusion in a material order, thetioaal isotopic composition of
that removed material must be fixed. In other words, no métber you slice it, the rela-
tive proportions of each isotope remains constant for eacimic or measure of the barrel’s
material that gets remov&dAny satisfactory treatment of the winery issue must evalhtu
satisfy this assumption—otherwise we model highly suspketnical or physical extraction
of reprocessed stream constituents.

We begin to develop a form for solving the approximation feabas follows: LetB be
the number of barrels from which the plant may choose in apprating a recipe. At the time
of the order, letM,; be the mass of isotopan barrelb. If we thought we could construct the
recipe exactly, we would need only choose the fractigmf each barrel to use such that the
aggregate material has mas®f each isotopéin the recipe. Determining in that case would

simply require solving the matrix equation

Mz =r (4.8)

5To put it still another way, it's as if the material in the belrivere a chemical compound; naturally, the
stoichiometry of the whole is the same as that of any sampleagmove.

75

However, there is na priori reason to suspect that a unique solution exists, nor indesd t
any at all do. For instance, we know that no exact solutiostexi there are any “impurities”
in all our barrels, that is, any isotopefor whichr; = 0 but M,; # 0, Vb € 1,..., B. Instead,

we allow an approximate recipe x # r and we define the residual of the approximation:
Mz —r (4.9)

The smaller we can make the residual, the better the appatximof the original recipe.
Ferris, Mangasarian, and Wright (2008, p. 221-222) note wWeatan cast this problem of
minimizing the L' norm of the residual|[(3/z — r||,) as the following linear prografmby

adding dummy variableg;

min, , ely
subject to y = |Mxz — 7| (4.10)
0 S Ty S 1, 0]

wheree is a vector of ones with lengtB. The value of the objective function can be used to
evaluate the quality of the approximation with respect ®dhginal recipe, and we can set a
lower bound on its value to prevent separations from defigstompletely unsuitable material.

We can make several improvements to this selection schemme, s1ore practical than oth-
ers. The most obvious would be to use fitenorm of the residual for the objective function.
This choice would give us the common “least-squares” appration, which has the advan-
tage of more heavily penalizing larger deviations from theeig recipe. It would be fairly
straightforward to do so using a statistics library; to sdlve revised problem with optimiza-
tion software would require a library capable of solving dpaic programs.

However, one advantage of the LP approach in this contekiaisit allows us to weight
the contribution of each isotope to the objective functiod #o impose additional constraints.

These capabilities are useful in light of three obvioudasims of Equation 4.10:

"In the unlikely case where an exact recipe exists, the disgefitnction value will achieve its absolute mini-
mum of zero, so our approximation assumption does not piledinding an exact solution to 4.8.

76

1. There may be orders-of-magnitude differences in the @esasBvarious isotopes called
for in the recipe and of isotopes not called for in the recipegresent in some or all
of the barrels. The form of the objective function in Equatéb 10 gives an isotopic
“matching incentive” that is in direct proportion to the sgeed mass of that isotope,
which isn’t really the weighting we desire. For instance28B is almost always the
most abundant isotope in a recipe by more than a factor oBetneutronic importance
is not dependent on mass alone, and we actually care muchahotg matching the
(smaller) U-235 mass than the U-238 nfass

2. While the formulation gives explicit incentive to matcle tnass of each individual iso-
tope, there is not necessarily any additional incentivetfetotal mass of the recipe and
of its approximation to match. We want to be careful not teralhe total mass of the
core significantly by providing fuel batch approximationsoge total mass varies greatly

from the recipe’s.

3. The formulation does not account for the total neutrofffiecés of deviation from the
recipe. This is the most difficult aspect of the winery probfer any code and obviously
the most important one; any recipe approximation is wosthlié a core made of the

resulting material wouldn’t perform properly in a reactor.

The first issue is the easiest to address; we simply normieeontribution of each iso-
tope to the objective function via a coefficieatformed from the inverse of the mass specified
in the recipe (see Equation 4.12). This penalizes massta®viom the recipe in more ap-
propriate proportions and gives the algorithm more initielentive to correctly match, say,
U-235 (a highly reactive species which in most recipes ciaseprsome small percentage of
the total mass) as U-238 (the significantly less reactiveoritgjcomponent in most recipes).
For isotopes that appear in the candidate barrelsibuin the recipe,; equals zero and so

we cannot divide by it. For now, our coefficient for weightiting penalty for these isotopes is

8At least for thermal reactor fuel recipes.

77

1/m,., wherem,. is the total mass of the recipe. Thus, we now have

ming , cy
subject to y = |Mz — 7| (4.11)
0<ax, <1, Vb
where
. 1/r; ifr;#0 (4.12)
1/m, ifr,=0

Other choices are possible and may be more appropriate;rédsemnt choice merely allows
us to minimize our dependence on coefficients that do not haswaightforward physical
interpretation.

Next, we add additional constraints to check that the appration is suitable from the per-
spective of both total mass and neutronic performance.iét swnservation of mass constraint
would be

mr =m,

wherem,. is the total mass of the recipe, is a row vector, and the componeny is the mass of
barrelb. However, as we begin to add more constraints, we must wboytaour inadvertently

making the LP infeasibfe Thus, we soften the constraint to
|mz —m,| < e (4.13)

wheree,, is some mass by which it is tolerable for the approximatidotal mass to deviate
from the recipe’s. Within the code, we can set it as some aetifin (say, 2%) of the recipe
mass; we can even make that fraction an input parameter.afderiwe set,, (ande,, below),

the greater our chances of preserving a non-null subspa& dfom which to choose an

optimal z.

9Duality theory seemed beyond the scope of this treatmerihe&it programming. The more precise term
would beprimal infeasible

78

We can attempt to preserve the overall neutronic behavitbreohpproximation in the same

way. Thus, we write another constraint
lwr — w,| < €, (4.14)

wherew andw, are some neutronics-based weighting value (discussed/petdculated for
each barrel and for the recipe, respectively. Agajrexpresses some tolerable deviation in the
sum of the weights for the chosen approximation’s compaatn the weight of the recipe.

This gives us a final formulation of

min, , 'y

subject to y=|Mx—r|
0<mz <1, Vb (4.15)

|mz —m,| < en

lwr — w,| < €,

The latter constraint is problematic. It makes perfect edonsenforce conservation of
mass via Equation 4.13 because mass is an extrinsic propéstyever, neutronic properties
like cross-sections are intrinsic properties whose vatlggst change as you vary the size of
the sample, so it's unclear how this weighted sum approathmerk. We can observe this
problem formally by examining the definition of the neutr@production factory, which is
the weight we currently use far, and for eachw,. This choice, which of course comes from
the four-factor formula for calculating the multiplicatidactor of an infinite and homogeneous
core, is an obvious and appealing place to start becausthé igrimary measure of the fuel's
contribution to the neutron economy and depeoraly on the composition of the fuel—not the
core geometry or the composition of the moderator or coolant

Unfortunately;; doesn't fit very well into our formulation. To see why, firsttadhat for an

I-isotope material, the neutron reproduction factor carxpesssed according to the following

79

equations:

I I I
> vioin' > Vo NV > Vo N’
i=1 _ =1 =1
I

y— (4.16)

z:laflni i:laéNi/V ZI:IUZNi
whereo’, o, ', andn' are the microscopic fission cross-section, the microscapsorption
cross-section, the number of neutrons created per fissnoith@ number density of isotope
To make the form suitable for GENIUS, which stores numberatois rather than number
densities, we can substituté = N*/V, whereN' is the number of atoms of isotopendV/

is the material volume, which we don’t need to know becausaritcels. Next, let’'s expand

Equation 4.14 from its matrix form into a more explicit suntioa form:

B
| Z WyTy — Wy < €y (4.17)
b=1

Ideally, if we could choose barrel fractiong such that the composition of the approximation
perfectly matched the recipe, then we would want the leftdrgide of Equation 4.17 to equal

zero. Equivalently,
B
Z wyTy = W, (4.18)
b=1

However, if we letw = 7, define N* as the number of atoms of isotopén barrelb, and

substitute Equation 4.16 into Equation 4.18, we can sedlisais not quite the case:

I
B <Zuia}]\ﬂ’b>
D e
7

b=1 i Nisb
a
i=1

1=

I . . B .
> Vo S Nibg,

T # (4.19)

b S oi S Nibg,
i=1 b=1

In plain English, the neutron reproduction factor of the Wehdoes not equal the weighted
sum of the neutron reproduction factors of the parts we btildth. Again, we shouldn’t be
surprised by this; there’s no reason to expect the repragufzctor to behave like an extrinsic
guantity if the cross-sections that comprise its definiaoen’t extrinsic.

As a concrete illustration of how these constraints worletbgr with the objective function

(and, in particular, of the adverse effects of the approkimneof Equation 4.19), consider the

80

following simple case. We wish to construct a recipe comgiri00 tons of uranium enriched
to 4.5 w/o U-235 using two 100-ton barrels: one enriched 5on80 U-235 and one enriched
to 5.5 w/o. The target recipe has a reproduction factoy,.of 1.23648, and the reproduction
factors of the candidate barrels afe= 1.13485 andn, = 1.31540. By inspection, we know
that the correct answer to this problem is to use half of earheb However, if we fully
enforce both the neutronics and the total mass constramtsdlution we desire is not in the

feasible region because
(0.5)(1.13485) + (0.5)(1.31540) = 1.22512 # 1.23648

In a sense, the formulation believes that the actual cos@ation (which achieves the abso-
lute minimum of the objective function value, zero, becaemeh isotope matches exactly) has
a reproduction factor that is too low, because the left-hsidd of Equation 4.19 underpre-
dicts the correct reproduction factor (which is given by tigiat-hand side of Equation 4.19).
The algorithm must work from the feasible set of choices{tor, z»}, which includes only
those choices for which the total masses match and for whinslieves (incorrectly) that the
reproduction factors match.

Table 4.2 shows what happens as we relax and then entirebgdisl the neutronics con-
straint. As the allowable deviation between the calculatggl,, and the given), gets larger,
the feasible region expands until it eventually includes sblution{z; = 0.5,z = 0.5}.
The table shows that for this problem, that occurs whgf, is somewhere between 0.5%
and 1%. The first two times times the neutronics constrairglexed, the solver can include
more U-238 and less U-235, improving the objective functdmle staying within the limits
of acceptable deviation from what it believes to be the @e€sjr,,,... The pattern of improve-
ment of course ceases once the feasible set includes- 0.5, 2, = 0.5}, since the objective
function cannot improve after that point.

Conversely, Table 4.3 shows what happens when we insteattinel#otal mass constraint.
In this case, we never expect to recover the correct ansveaubke that answer remains infea-
sible as long as,, = 0. But as we begin to allow approximations whose total massatievi

somewhat from the total mass of the recipe, we again seehbadiver identifies solutions

81

Table 4.2 Effects of relaxing the neutronics constraint.

Total mass | Neutronics Calculated | Calculated | Actual | Enrichment
constraint? | constraint? solution Napprox Napprox | [W/0 U-235]
Enforced: Enforced: | x; = 0.437103 1.23648 | 1.24748| 0.0462579
em =0 €w =0 xo = 0.562897
Enforced: Enforced: | z; =0.471344 1.23030 | 1.24154| 0.0455731
em =0 €w = 0.005m, | o = 0.528656
Enforced: Enforced: 1 =0.5 1.22512 | 1.23648 0.045
€n =0 €w = 0.01n, xo = 0.5
Enforced: Not x1 = 0.5 1.22512 | 1.23648 0.045
€m =0 enforced 2o = 0.5

that allow it to include less U-235 and more U-238, steadiipiioving the objective function.
Unfortunately, as the total mass constraint gets very laigeobjective function continues to
improve even as the approximation passes the desired praith Thus, we come very close
to the correct enrichment af, /. = 1% but then continue into an underenriched regime as the

tolerance moves on toward 2%.

Table 4.3 Effects of relaxing the total mass constraint.

Total mass | Neutronics | Calculated | Calculated | Actual | Enrichment
constraint? | constraint? solution Napprox Napprox | [W/0 U-235]
Enforced: Enforced: | z; = 0.437103 1.23648 | 1.24748| 0.0462579
€m =0 € =0 o = 0.562897
Enforced: Enforced: | z; = 0.47353 1.23648 | 1.24157| 0.0455765
€m = .00bm, €w =20 xo = 0.53147
Enforced: Enforced: | z; = 0.509957 | 1.23648 | 1.23561| 0.0449018
€m = .01m, €w =20 x9 = 0.500043
Enforced: Enforced: | z; = 0.538137 1.23648 | 1.23097| 0.0443845
€m = .02m, €w =20 x9 = 0.475731
Not Enforced: | z; = 0.538137 | 1.23648 | 1.23097| 0.0443845
enforced €w =0 Te = 0.475731

This “overshooting” occurs because the normalizatiortesgnafor choosing objective func-
tion coefficients;, favors matching the U-235 exactly.{; = 1/4.5) over matching U-238
exactly (233 = 1/95.5). Although in general we do care more about matching the ofalgs

235 than the mass of U-238, in a two-isotope problem likeahis it's really this singleatio

82

of masses that we want to get right. However, the formuladimes not encode this preference,
and so it takes advantage of the slack afforded by loosehmgptal mass constraint and en-
deavors to match U-235 exactly at the expense of the (leashia) U-238 match. Figure 4.4
plots this behavior, decomposing the objective functidne@to the component contributions
from the U-235 and U-238 terms over a range of tolerancesic@lthat the best enrichment
achieved (that is, the one that’s closest to the enrichmighteaecipe) occurs when the contri-

butions of each term are closest to equal.

Objective function decomposition
vs. tolerance of total mass constraint
0.03

i

: Best U-235 enrichment
I (4.490 w/o)
|
|
|
|

—— Total
—— U-235 term

0.02
—&— U-238 term

0.01

Objective function value

T L]
0.013 0.015 0.02
Tolerance

T
0.005

Figure 4.4 Decomposition of the objective function value into its Us28nd U-238 contribu-
tions. Note that the algorithm favors U-235 matching beeahat isotope’s objec-
tive function coefficient is greater.

Although in the example above the approximations would b& berved by removing
the neutronics constraint altogether, it's not unreaskenti expect that using thig-based
neutronic-weight constraint will improve the quality ofrse recipe approximations, since it
still carries first-order information about which isotop® favorable from a reactivity per-
spective and which aren’t. We shall see in the results chépaé Equation 4.15 does do a ser-
viceable job in many cases. Again, this formulation can begt of in a sense as placeholder

functionality that allows us to begin to model closed fuadlegwithoutmodeling non-physical

83

extraction from a single homogenized collection of repsseel material. The approach can be
refined and made more rigorous from a reactor-physics pergperia subsequent research

projects, or it can be replaced entirely if necessary.
4.5 Summary

This chapter derived a series of single-commodity lineawaek flow programs to solve
the multi-commodity routing problem on a month-to-montisisaDrawbacks of and possible
future directions for this formulation were briefly discads the most important drawback
being the naive time horizon. The chapter also presentegoxmation-theory based linear
program for solving the recipe approximation problem thatsgns the process of constructing
recycled fuel from reprocessed material. Here the mosifgignt drawback is the less-than-
ideal form for the neutron weighting constraint. Chapter bt&st and demonstrate the results

of these formulations and better inform future attemptsritprove them.

84

Chapter 5

Test problems and demonstration results

This chapter reports results from various testing and bmacking problems designed to
demonstrate the capabilities in place in GENIUSv2. Morenaegis and systematic testing and
the first realistic fuel cycle calculation for a real-worltlent are ongoing. The first major
tests run on GENIUS were (1) benchmark problems designedheokcits total mass flow
results against VISION’s for a set of comparable reactotayepent scenarios and (2) a pair of
large multi-region scenarios designed to illustrate theARalerarchical matching methodology
described in Section 4.3.1. In this chapter, Sections @afhd 5.1.2 report on these testing
and demonstration activities and are drawn, mostly verpdtom the conference pagehat
reported on them (Oliver et al., 2009). The remaining sestgive new results not yet reported

elsewhere.

5.1 Once-through fuel cycle results
5.1.1 Comparisons with VISION

Because VISION has emerged as the standard tool for perfgrionah cycle systems analy-
sis calculations, the following benchmarking problems pare GENIUS and VISION results
for a series of analogous test problems of increasing coatyleThroughout the discussion

it will be important to remember thanalogousis the operative word. At a certain level of

Many thanks to my coauthors on that paper for their suggestad feedback, and in particular to CNERG’s
VISION expert Tae Wook Ahn, who ran the problems on the VISIS8e in addition to helping me identify
appropriate fuel cycle parameters (see Table 5.1) and tihe fir Equations 5.1 and 5.2. Thanks also to Katy
Huff for her help with GENIUSV2 recipe management.

85

granularity, fleet-based, continuous-flow codes and DF/des are simply incompatible.
However, the overall behavior, including integrated matehroughputs, of each model’s ap-
proximation of any given scenario should give nearly to tames answers. Note that each
problem was run with VISION'’s radioactive decay routinemad off, since the analogous
routines in GENIUS are still being tested and debugged.

Problem 1 is a single-reactor benchmark with no fuel fatiocaconstraint§ and its pur-
pose is to compare accumulated spent fuel mass and isotogBiSNIUS and VISION. The
parameters for this simulation and the three that followet@iven in Table 5.1 and represent

a combination of parameters that in our experience tend tk well in the VISION model.

Table 5.1 Parameters for VISION-GENIUS benchmark problems

Parameter Value
Start year 2000

End year 2099
Construction + license time 6 years
Operating timeQOT 60 years
Power capacityP 1050 MWe
Capacity factorC'F’ 0.90
Thermal efficiencyy 0.34

Cycle time, T 12 months
Fuel burnupBu 51 GWd/tHM
Fuel batches per coré/ 5

Comparing GENIUS and VISION results requires first devisingethod to ensure that
their reactors’ fresh and spent fuel isotopics are comperdo accomplish this task, one must
reconcile the different means by which each code accountséberial. VISION stocks and
flows are each described by a total mass whose isotopic lreakid stored as a set of mass
fractions, with each fraction corresponding to a particidatope. The discrete materials in
GENIUS, on the other hand, store thlesolutenumber of atoms of each isotope, not the atom

or mass fraction. Thus, to construct a pair of GENIUS fuelpes, first determine the fixed

2GENIUSV2 provides mechanisms for creating special uncaimstd testing facilities that make offers ac-
cording to specified monthly capacities and execute theespanding orders immediately upon matching. The
materials themselves get created out of thin air, so to sgéake of these test facilities has its capacity to some
extremely large number, there is no risk of insufficient foeing available.

86

core mass), corresponding to the material in a VISION reactor fleet @gpnting a single
reactor. Next, multiplyl/ by the VISION mass fraction vectors that represent freshsaedt
fuel isotopics for a particular fuel type and burnup leveinafy, convert the corresponding
masses into numbers of atoms and load the resulting GENt@u$atible recipes into the
code. The only difficulty in this procedure is dealing witbtispes that VISION does not track
individually. These VISION recipe constituents, which ¢gggged with the labelOTHER,
cannot be converted unambiguously into GENIUS recipe domesits; while they have a well
defined mass in VISION (their mass fraction times the totassnaf the stock or flow), they
cannot have such in GENIUS because in GENIUS the mass of &itcems is stored implicitly
as the number of atoms times an appropriate atomic mass. \8bmbe effort was made to
assign representative atomic masses to@EHER components, the process introduced some
error (see below).

The GENIUS fresh and spent fuel isotopics for these probembased on the mass frac-
tions from a standard VISION LWR fuel recipe through integimn for 51% of burnup. To
obtain)/, first note that VISION calculates a continuous fuel constiomgate by quarter-year
time step according to Equation 5.1:

_ P(CF)
~ n(Bu)

h (5.1)

This amount of mass, which constitut§$h of the total core, emerges from the reactor during

the cycle period?7’, so the total core mass for a GENIUSv2 reactor using thipessi

PNT(CF HM
PNT(CF) = 99.459 !
n(Bu) core

M = mNT = (5.2)

In Problem 1, reactor construction and licensing start id2@nd once the reactor begins
operating it runs for its designated operating time bef@iad decommissioned. We can do a
simple hand calculation to compute the total mass ejected & reactor for an idealized real-
world refueling scheme: At startupy, batches are inserted (total magg. During each normal
year of operation one batch is inserted and one ejected(baiss%). In the decommissioning

year, all N batches currently in the core are ejected (total m&3gs Thus, the total ejected

87

mass,M.;, should be (neglecting.c? losses):

M
N(OT — 1)+ M =1273ktHM (5.3)

M.; =
Table 5.2 shows the results of the hand calculation and tbeierthe two simulations with
respect to that prediction, and Figure 5.1 shows the codagsi\bor as a function of time. The
GENIUS underestimate for the total is due to a conservatiomass violation in our procedure
for reproducing the appropriate amounts_GfTHER isotopes from the VISION discharge
isotopic recipe. The VISION overestimate may result froenparticular implementation of
modeling a discrete process like refueling in a continuoasmer, although note also that an
extra offloading of one batch (mad$/N = 19.9 tons) would approximately account for the
difference. Overall, though, this analysis suggests th&tON is a suitable reference against
which to compare GENIUS and indicates the magnitude of dmcy that can be expected

in comparing more complex scenarios.

Table 5.2 Comparison of total spent fuel mass calculationsifmle reactor.
Calculation method Total ejected Relative error
fuel mass [ktHM]

Hand calculation 1.273 -
VISION simulation 1.293 +1.57%
GENIUS simulation 1.267 -0.47%

This reasonable agreement extends to the isotopic le\gliré&b.2 plots results for the dis-
charge isotopics of the five largest actinide streams in biotlulations. The end-of-simulation
discrepancies are of the same magnitude as when we comparmésses; the differences in
the GENIUS results with respect to the VISION results faliveen 1.81% and 2.05% (see
first column of Table 5.3 below).

To ensure that these results scale appropriately, for @mBlwe repeated the same test but
with ten such reactors. Because these reactors were identtbe first one and all begin oper-
ating at the same time as in the single case, we expected ardveld magnitudes exactly ten

times greater than in the single reactor case and with the sach-of-simulation discrepancies.

Total mass flow from single reactor
1.5 9

1.2 4

—_

=

z

X

d

W 0.9+

[}

£

]

E 0.6

X~

1] VISION

g X GENIUS

2,

W 0.3
o* U J J 1
2000 2020 2040 2060 2080

Year

Figure 5.1 Integrated total mass flow from the single reactor in Proble@elcause GENIUS
is a discrete-flow code, it handles reactor startup and dedssioning in a straight-
forward way. Image and caption from Oliver et al. (2009).

Actinide mass flow from single reactor

1E+0

—
=

S

T

= U - VISION

0 .

A X U -GENIUS
© Pu - VISION
£ % Pu- GENIUS
< Np - VISION
2 % Np - GENIUS
h Am - VISION
@ X Am - GENIUS
Y 1k Cm - VISION
.:_:, X Cm - GENIUS

1E-6 T T T J
2000 2020 2040 2060 2080

Year

Figure 5.2 Integrated mass flow from the single reactor in Problem 1, ferfitre largest ac-
tinide streams (note semi-log scale). The end-of-simutagiwors in the GENIUS
results with respect to the VISION results for each elemeatgiren in the first
column of Table 5.3. Image and caption from Oliver et al. @00

89

Problems 3 and 4 complicate the facility deployment by dpeg growth curves. As men-
tioned earlier, GENIUSv2 requires a user-driven faciligptbyment in order to avoid using a
deployment heuristic. Of course, calculating a reactodajepent to meet an arbitrary de-
mand curve is a fairly trivial problem, so that capabilitysizeen written into the GENIUSv2
pre-processor. Thus, Problem 3 is a stepwise-linear groagle where the simulation starts
building reactors in 2000 and increases the total capagityrie reactor each year (requiring
two new reactors per year starting in 2067 to account for etieement per year during those
final 34 years).

The mass flow results for this problem are shown in Figure with(isotopic breakdowns
again in Table 5.3), and they once again show good agreerNetite that that the VISION-
GENIUS discrepancy shrinks measurably and that this tim&IGES gives a larger result.
Careful examination of Figure 5.1 suggests an explanationai®e of the differences in how
they handle startup and decommissioning, the time-intedrgjected mass values for GENIUS
reactors are higher than for VISION during most of the reestidetime (because VISION
only ejects half a batch’s worth of fuel in the first year) btg dower than for VISION once
decommissioning is complete (because VISION reactorsuwcnasnore total lifetime fuel than
their GENIUS counterparts, as seen in Table 5.2). Thus, edthe error cancels. And because
94 of the 128 total reactors built during the simulation haweyet been decommissioned in
2100, the VISION fleet lags behind the GENIUS fleet in termsusf imass ejected so far,
even though in the end each of the VISION reactors will hawslstightly more fuel than the
GENIUS reactors.

Problem 4, the final VISION-GENIUS benchmark problem, is égponential growth in
electricity demand. The initial demand is 10 GWe and the dehgrowth rate is 2% per
year. The simulation includes ten “legacy” reactors thatexhen the simulation starts. They
retire, one per year, starting in 2029. The mass flow resattshfe VISION and GENIUS
simulations of this deployment are given in Figure 5.4. HBENIUS returns a lower total
mass than VISION; as noted in Problem 3, the higher the p&gerof total reactors that

reach decommissioning by the end of the simulation, the riloely VISION is to compute

90

Total mass flow from reactor fleet
100 +

s

75 4

>

k]

=

(]

(7]

[}

E so-

(]

=

Y=

T

2

0 VISION

2 254 X GENIUS

w
] | | | | 1
2000 2020 2040 2060 2080 2100

Year

Figure 5.3 Integrated total mass flow from the reactor fleet in Problem 3. Tinbod
simulation errors in the GENIUS results with respect to th&NMNIN results for
total mass and the five main actinide streams are given irhtteedolumn of Table
5.3. Image and caption from Oliver et al. (2009).

larger mass flows than GENIUS. In Problem 4, 31.7% of the cegaaglet decommissioned,
as opposed to only 26.6% in the previous problem, so it's Boy gurprising that GENIUS
returns to computing a lower total mass output than VISIONaly, note that the isotopic
discrepancies with respect to the VISION case are givendrfittal column of Table 5.3 and

once again show reasonable agreement at that level of detaill.

Table 5.3 Summary of isotopics results for benchmark proble

GENIUS error w/r/t VISION
Material stream 1 2 3 4
Total mass -2.00% | -2.00% | 0.32% | -0.53%
Uranium -1.93% | -1.93% | 0.38% | -0.47%
Plutonium -2.05% | -2.05% | 0.27% | -0.58%
Neptunium -1.89%| -1.89%| 0.43%| -0.43%
Americium -1.91%| -1.91%| 0.40%| -0.45%
Curium -1.81% | -1.81%| 0.51%| -0.34%

91

Total mass flow from reactor fleet

60

45 4

30 4

VISION
X GENIUS

Ejected fuel mass [ktHM]

>
Y
v

U J J J 1
2000 2020 2040 2060 2080 2100
Year

Figure 5.4 Integrated total mass flow from the reactor fleet in Problem 4. T of-
simulation errors in the GENIUS results with respect to th8IaN results for total
mass and the five main actinide streams are given in the foahtimn of Table 5.3.
Image and caption from Oliver et al. (2009).

5.1.2 Rule-based fabrication matching in three-region prblem

Problems 5 and 6 are two once-through problems that denad@SBENIUSV2’s ability
to be scaled up to larger scenarios and that point to the egghand flexibility of the R-I-
F model and the formulations for solving the MRP. The facitigployment for Problems 5
and 6 is given in Table 5.4. Both of the reactor regions contiaiee institutions: a small
and a large fuel fabricator and reactor operator buildinigeeiPWRs or PHWRSs to match a
linear demand curve. The third region contains only a laaipei€ator with facilities for both
LWR and PHWR fuel. The parameters for both types of reactorgigesn in Table 5.5. The
precise fuel fabrication capacities were chosen to matattoe batch sizes in order to avoid
the unrealistic scenario of splitting a fuel batch ordemssn two different fabricators. Future
work will explore optimization techniques to relax this stmraint in a way consistent with the
network flow model. Note that this is a fairly large problemcélls for construction of 748
total reactors (compared to 130 in Problem 3, the largesuo¥/¢SION benchmark problems)
and records 43,521 individual material transfers (9,61Rrblem 3).

92

Table 5.4 Facility deployment for three-region fuel fabtion matching problem.

Region | Institution Facilities
1 1 1 PWRin Jan. 1970
Linear growth: 1.71 GWelyear
2 1 LWR Fuel Fab (78.66 tHM/month)
3 1 LWR Fuel Fab (157.3 tHM/month)
2 4 1 PHWR in Jan. 1970

Linear growth: 675 MWel/year
1 PHWR Fuel Fab (333.7 tHM/month
1 PHWR Fuel Fab (667.3 tHM/month
3 7 1 LWR Fuel Fab (157.3 tHM/month)
1 PHWR Fuel Fab (667.3 tHM/month

(6]
N—r

[ep)
N—r

N—r

Table 5.5 Parameters for three-region fuel fabricatiorchiag problem.

Value
Parameter PWR | PHWR
Start year 1970
End year 2099
Construction + license time 5 years
Operating timeQOT 50 years
Capacity factor(C' F’ 0.90
Power capacityP [MWe] 1000 | 600
Thermal efficiencyy 0.33 | 0.30
Cycle time, T [months] 18 12
Fuel burnup Bu [GWd/tHM] | 45 7
Fuel batches per coré/ 4 1

In Problem 5, the GENIUS matching algorithm solves the MRPoating to the default
affinities described in Section 4.3.1. Problem 6 alters #fawt behavior by specifying two
rules: Institutions 1 and 4 (the reactor operators) getepegitially matched with Institution
7 (the extra-regional fuel fabricator) as if they were ak ttame institution. This affinity
assignment could represent any number of modeling desisinaluding to simulate a long-
term contract between Institutions 1 and 7 and 4 and 7; tafgigmat all three are, in fact,
owned by the same company; or to capture some price advah&agsiting Institution 7.
Figure 5.5 (PWRs) and Figure 5.6 (PHWRSs) show results for the @tiveitravel of fabricated

fuel from the various suppliers to the reactor fleets in the ¢ifferent problems. The top of

93

each figure shows the default behavior; the extra-regicataiidator is the supplier-of-last-
resort and is only purchased from consistently when therateesity is high enough that the
fabricators in the reactor regions are always working aaciay Conversely, the bottom plot

of each figure shows that the foreign fabricator is now prefer

Default fabricator matching for PWR fleet
250 -
200 B Institution 2
[Institution 3
E [Institution 7
I
g 150
n
n
©
f 100 -
[]
5
[T
50 4
o-
2029
Year
Rule-based fabricator matching for PWR fleet
250 -
200 4 B Institution 2
B Institution 3
5 [Institution 7
=
I
g 150
()]
(0]
©
E 100 -
[]
-]
'S
50 4
o-
2029
Year

Figure 5.5 Change in matching of PWR fuel fabricators to reactors ptpoirders. When the
reactor operator’s affinity for trade with Institution 7 iscreased sufficiently, it

becomes the favored supplier even though it's located ith@noegion. Image and
caption from Oliver et al. (2009).

Default fabricator matching for PHWR fleet
1000 -
800 [Institution 5
B Institution 6
s [Institution 7
I
g 600 -
n
"]
(]
E 400 -
]
=]
[T
200 -
0
2029
Year
Rule-based fabricator matching for PHWR fleet
1000 -
800 [Institution 5
B Institution 6
5 [Institution 7
I
g 600
"]
(0]
]
E 400 -
7]
3
('S
200 -
0
2029
Year

Figure 5.6 Same as Figure 5.5, except for the PHWR region’s fleet. Note dgasubstantially

different material routing based on one change to the inpit fiithage and caption
from Oliver et al. (2009).

95

5.1.3 Rule-based unenriched uranium matching in four-regin problem

Problems 7 and 8 present a similar scenario with a somewIpainebed scope to further
demonstrate the kinds of modeling and analysis GENIUSvAjmble of. These problems
simulate the entire front end of the fuel cycle with facdgithat have large capacities but are
constrained by material availability and process times@usual, realistic waysiescribed in
Chapter 3. Thus, we can examine scenarios where the aviglakar, more accurately, the
source—of raw materials is the object of study.

Table 5.6 shows the facility deployment of this scenarial #re other simulation param-
eters used are the same as in Problems 5 and 6. There are tvetingatecisions of special
interest here. First, note that Regions 2 and 3 are home teefugactors but no fuel cycle
facilities; these regions are meant to represent a small-aamedium-sized fuel “user state”
dependent for their fuel on a “supplier state,” Region 1 (tdeigure 2.1). One serious ques-
tion these user states might ask is how the global uraniunkeharill affect the prices they
will have to pay their supplier for fabricated fuel. In fatjs is an interesting scenario even if
the users have negotiated some guaranteed price, becansadreased material costs would
have to be absorbed in the fuel supplier state, possiblyghe@ssed on to rate-payers served

by the domestic reactor fleet that also depends on Regiondl'séuavice providers.

Table 5.6 Facility deployment for four-region unenrichednium matching problem.

Region | Institution Facilities
1 1 1 PWRin Jan. 1970
Linear growth: 1.71 GWelyear
2 1 Mine/Mill, 1 Conversion
3 1 Enrichment, 1 Fuel Fab
2 4 1 PWR in Dec. 2019
Linear growth: 0.81 GWel/year
3 5 1 PWR in Dec. 2019
Linear growth: 1.71 GWel/year
4 6 1 Mine/Mill, 1 Conversion

3In other words, there are none of the special “testing” fesdl that were deployed to supply fuel to the
reactors in Problems 1-6.

96

The second notable aspect of this scenario is that it siemldite effects of the kind of
price shock that could impact this user/supplier fuel sEnarrangement. It does so via a
mechanism based loosely on the current U.S. situationt, Riesmodel mining and conversion
capacity within the fuel supplier regiaand in some foreign region (Region 4). Second, we
set up a rule that creates affinities for trade favoring trexpensive foreign supplier over
the pricier domestic supplier, akin to how the U.S. cursectiooses to purchase uranium
from Russia rather than mining its ofvriThird, we abruptly change this uranium-trade status
quo by perturbing the affinities appropriately. Thus, evesugh GENIUS does not currently
incorporate economic modeling to effect the resulting geain material routing via arc costs
drawn from real-world price changes, it can still createragpnations to the behavior that
would result using its extremely simple affinity-based mode

Problem 7, accomplishes the proper “affinity managemera”assingle rule: we set the
affinity for trade of unenriched uranium hexafluoride from Reg! to Region 1 at 6.0, effective
from the beginning of the simulation until some set expmatilate, (see Table 5.7). Recall
from Table 4.1 that the default affinity for inter-institoi trade within a single region is 5.0.
Thus, early on in the simulation, whenever Institution 3isehment plant orders feed material,
the manager solves a network flow problem in which the ard¢ctivanects the enrichment plant
orders to Institution 2's conversion plant have a highet tosn the ones connecting them to
Institution 6’s conversion plant. Thus, until this rule @&s, the foreign supplier provides all
the uranium for Region 1's fuel cycle activities. After it ésgs, the default inter-region affinity
of 2.0 raises the cost on the previously cheaper arc and @ ismger selected. Note that this
all-or-nothing behavior takes place because both regiams bufficient capacity to supply fuel
to all the reactors in the simulation. If the capacities wlereer, we would sometimes have

observed the supplier-of-last-resort behavior of Prokl&mand 6.

40f course, Russia sends us uranium downblended from higitigheed weapons stockpiles, not material
that has been freshly mined, milled, and converted t@.URlthough GENIUSv2 enrichment plants could be
programmed to downblend when necessary and then model trentarrangement by initializing the foreign
enrichment plant with a large stockpile of highly enricheatenial, it would be a fair amount of work to implement
these capabilities for such an unusual and specializedrostance. Pretending the uranium is freshly mined
doesn't affect the nature of the material exchanges betteetwo regions and is thus an adequate approach for
an idealized demonstration problem.

97

Problem 8 incorporates two more finely tuned rules in ordeirtaulate something like an
even market situation when the initial rule expires. Thegesgveral ways to accomplish this;
the chosen approach is shown in Table 5.7. Here, the rulexipates during the simulation is
equivalent to saying that Regions 4 and 1 are the same, afdedlsé purposes of unenriched
uranium trade. But this would set a level playing field rightgwTo prevent matching of the
domestic uranium supplier to the domestic fuel service ideywelower the affinity between
Institutions 2 and 3. By lowering it to the default inter-regiaffinity of 2.0, the arcs connecting
the domestic enricher to both the foreign and domestic siplpave the same cost when the
first rule expires. The result is “foreign supplier only” laefor until the Rule 1 expiration date,

followed by some sharing of orders after that time.

Table 5.7 Summary of matching rules used for Problems 7 and 8.

Problem | Rule | From To Commodity | Affinity | tsiart | tend
7 1 | Region 4| Region 1 uUF6 6.0 0 d
8 1 | Region 4| Region 1 uUF6 5.0 0 d

2 Inst 2 Inst 3 uUF6 2.0 0 1560

Figure 5.7 plots the relevant mass flows in Problem 7 for tdiferent cases representing
three different values af (Rule 1 expires at the beginning of 2010, 2020, and 2040, cespe
tively). The lowermost area represents the cumulative lgdppm Region 4 in all three cases;
the adjacent area above represents the portion that isteily Region 4 under the two later
expiration cases but not the early one (in which it is insteavided domestically); the next
layer is the portion provided domestically for both of thelg&xpiration cases but not the
latest one; the uppermost area corresponds to the supplidpdodomestically in each case.
No uranium enters Region 1 from Region 4 in Problem 7 after Rubpires.

Figure 5.8 uses the same plotting convention to show thefdaRroblem 8, subject to the
same three different expiration dates for Rule 1. Note in ¢hse that material continues to
be transferred between Regions 4 and 1 after tij@ut a significant portion of the necessary
uranium starts to be supplied domestically at that time. Byehd of the simulation, be-

tween 32.8% and 38.9% of the total mass has come from the dicraesrce, with the largest

98

Unenriched uranium supply sources

Poor foreign market starting in 2010, 2020, or 2040
2700 -
| | |

| | |

1 1 1
------------ Foreign source - 2010 case
— - — - Foreign source - 2020 case
— — =~ Foreign source - 2040 case
Both sources - All cases

1800

900 4

Unenriched UF6 mass [ktHM]

I
|
|
|
|
|
|

T T
| |
| |
| |
| |
| |
I I
| |
| |
I I
| |
| |
| |
I I
|

t
]]

1999 2029 2059 2089

Figure 5.7 Sources of unenriched uranium for domestic enricher andctor providing fuel
for the PWRs in Problem 7. A rule favors the foreign supplieiilits expiration
date, at which point the default affinities favor the domestipplier. This figure
plots the three cases where the rule expires in 2010, 208@ @40, respectively.

amount obviously corresponding to the earliest expiradiate for whatever agreement caused
the foreign supplier to be advantageous.

How exactly the orders get distributed after tiches a fair question to ask, and the answer
is one that could incline us to change either the network édation, the way the code passes
problems to the solver software, or the simple affinity meda, as development continues.
From an LP/NFP perspective, the problentdegeneracymultiple optimal solutions can and
often do exist. For instance, if each of therequests can be filled by two different suppliers,
and if each supplier has enough capacity to fill all of thend #mll the arcs connecting the
suppliers to the requests have the same arc cost—all of vdoictitions are true after time
d in Problem 8—then there ag possible ways to match them. In fact, it seems to be just
a happy coincidence that orders get distributed betweetwibeuppliers once the market is
even. For instance, the first plots in Figures 5.5 and 5.6 shatin Problems 5 and 6 we were

not so lucky. The “even competition” between Institutionarzl 3 and between Institutions 5

99

Unenriched uranium supply sources

"Even market" starting in 2010, 2020, or 2040
2700 -
I I I

1 1 1
------------ Foreign source - 2010 case
— - — - Foreign source - 2020 case

—
= — — =~ Foreign source - 2040 case
T Both sources - All cases
X
= 1800 - | | H
n | | |
H | | | i
£ | | | <
© | | | P
| | | :
=)
s | | | ’
2 | | |
2 900 1 I I I
£ | | |
o | | |
g | | 2020 W =
L [
|
....... |
= |
o | | |
1 1 1 1
1999 2029 2059 2089

Figure 5.8 Sources of unenriched uranium for domestic enricher andcttor providing fuel
for the PWRs in Problem 8. One rule favors the foreign suppligit its expiration
date, at which point only the second rule applies, settimgatfinities even. This
figure plots the three cases where the first rule expires in 22020, and 2040,
respectively.

and 6 did not result in their sharing orders. Instead, lmstihs 2 and 5 were matched with
requests as long as they had the capacity and only in montés thiey were fully committed
did Institutions 3 and 6 receive any business, so to speak.

It seems very likely that the systematic way the solver weagpnstructs the mathematical
representation of each NFP—combined with the systematidheasolver itself iterates toward
a solution—causes the solver to return similar degeneddigi@ns each time. In the case of
Problems 5 and 6, those solutions consistently favored aloéchtor over another. The same
is somewhat true in Problem 8. For each of the three expiratades for Rule 1, Figure 5.9
plots the fraction of the sum of the uranium mass providedheyforeign supplier each year
(its yearly market share, so to speak). Although the fraagBaot constant, it is always greater

than or equal to 0.5, suggesting a sort of artificial prefeegor the foreign supplier due to the

100

random but seemingly consistent identification of degdees@lutions that draw more uranium
from it despite the equal arc costs across the network.

It's interesting but not especially surprising that theaatoes not change from orease
to the other (note the overlapping data points in Figure. 5@y a given monthn such that
m > d, the NFP solved is almost exactly the same across the thses-eghe same number of
offers (2) and requestgz| are filed by the same facilities, and the arcs that conneailmus
to clients have the same cost associated with them. Onlyuhatiy of available material
that each supplier has to offer (i.e., the divergence of sacince node) depends on what has
happened in previous months. Of course, the danger in makisgrvations like these is that
the solution behavior under degeneracy is likely very atgor- and library-dependent; one

certainly wouldn’t want to get in the habit of depending ortrging to predict it.

Fraction of total supply from foreign source each year
For highly degenerate "even market" network

0.75

g}
0.5 ¥t

2010 case
2020 case
2040 case

xXono

0.25

(Foreign supply) / (total supply)

o J T 1
2010 2040 2070 2100
Year

Figure 5.9 Yearly foreign supply over total supply in Problem 8. This fraw is unpredictable
because after the Rule 1 expiration datghere ar@’ degenerate optimal solutions
for the NFP that matches th@ uranium requests each month to one of the two
suppliers, and we do not know which solution the solver wildifin

What to do about degeneracy should depend on careful thobght ahy (and even if) it
truly poses a modeling problem, especially in the long taa.could of course devise methods

for removing the degeneracy itself or the effects of the extdvapparent tendency to return

101

similar degenerate solutions for similar problems. Fotanese, as long as GENIUS solves the
NFP with LP technology anyway, additional constraints dancourage the manager to better
balance the load in cases with many equal-cost arcs. We etaddprobably randomize the
order in which we translate the list of offers and requedts he mathematical representation
of the problem. Or, if the effects of that measure didn’t miiast the solver’s pre-processor,
we could randomly perturb the cost of each arc by some smatldtectable random number.
However, this last strategy hints at a point that may engmites to simply ignore degen-
eracy for now: once the code moves beyond a purely affinisedarc-costing scheme, it's
likely that most of the problematic degeneracy will justagipear. For example, if distance be-
tween supplier and customer were ever to be made even a srtaif phe calculation GENIUS
performs to assign arc costs, most of those costs would inatedgloecome unique, thus elim-
inating much of the degeneracy without any artificial or ¢caist-increasing intervention. It's
reasonable to assume that any sophisticated arc-costieges will avoid assigning identical

costs to very many different arcs.

5.2 Closed fuel cycle results
5.2.1 Recipe approximation unit tests

This section briefly describes the simple unit tests thatfany for the recipe approxima-
tion problem should certainly pass. Of course, the abititgdss these tests does not guarantee
success on more realistic problems, and in fact for moresteaproblems it's not often en-
tirely clear what the correct answer is. In a sense, theradivantage of starting with the tests
below is that they serve as a mechanism for screening oubagipes that have little hope of
being useful ifeforethose approaches make it to problems on which it’'s hard tluateatheir
effectiveness). For the tests that follow, the valags= 0 ande,, = 0.01m, were chosen due
to their relative success in the illustration case from tie & Chapter 4, which is reproduced
as Test 6 below.

To test the mass-matching functionality apart from the muts considerations that com-

plicate matters so significantly, Tests 1-4 involve only {figsionable isotopes. Thusg, = 0

102

andw, = 0,¥b = 1,..., B and so the neutron weight constraint (Equation 4.14) isaltyv
satisfied. Tests 1-4 are various perturbations on apprdixijm&eavy water (PO) recipes
given candidate barrels of varying usefulness. In Testd algorithm is asked to construct
1 Mmol of D,O from a barrel containing 1 Mmol of O and another containing 1 Mmol of
light water (H,O). Obviously, we expect the LP solution to tell us to use albwe and none
of the other. Test 2 doubles the recipe (2 MmMaglX) and adds a third barrel, a duplicate of
the match from Test 1; we now want the solution to include Wi® barrels. Test 3 uses the
same candidates but reduces the target recipe by 25% (torhd B} O). Of course, this test
has a family of degenerate optimal solutions, and we meegjyire that the solution returned
belongs to that family. Finally, Test 4 must approximatet Teés target recipe using Test 2's
candidates. However, to each of thegbarrels we've added different amounts of an impurity,
“dissolved” helium. The solver should choose the barrehilie least of that impurity. Table

5.8 summarizes Tests 1-4 and establishes the notation oiste:fremainder of this section.

Table 5.8 Problem definition and results for Tests 1-4: Recipe approk@mawith non-
fissionable components.

Test Target recipe Candidate barrels Desired Result
[Mmol] [Mmol] solution

1 [H-1, H-2, O-16] 1:[2,0,1] 1 =0 r1=0

=10, 2, 1] 2:10, 2,1] xo =1 xe =1

2 [H-1, H-2, O-16] 1:[2,0,1] r1=0 1 =0

=0, 4, 2] 2:10,2,1] x9 =1 xe =1

3:10, 2, 1] T3 =1 x3 =1

3 [H-1, H-2, O-16] 1:[2,0,1] r1=0 x1=0.0

= [0, 3, 15] 2. [O, 2, 1] To + T3 = 1.5 Ty = 0.5

3:10,2,1] z3=1.0

4 | [H-1,H-2, He-4,0-16]] 1:[2,0,.00,1] 21 =0 z1 =0

=0, 2,0, 1] 2:10,2,.01, 1] x9 =1 x9 =1

3:[0,2,.02,1] T3 =0 z3 =0

While these tests are useful for demonstration purposesaarmbhfirming the basic func-
tionality of future formulations, in practice there wdlwaysbe fissionable isotopes in the

recipes and candidate barrels. In Tests 5-7, then, thersateampts to approximate a simple

103

uranium oxide fuel recipe weighing 100 tHM and with a U-23%ie@mment of 4.5 w/o. Be-
cause/'v; is nonzero for the isotopesnvolved in these tests, the neutron weighting constraint
will affect them.

Test 5 is the loose equivalent of Test 1; the candidate Isamelude one containing the
correct material and one that is under-enriched. The baagsfmatching constraints should
suffice to allow the solver to discern among the two barrelgkwis correct, but we include this
test to be sure that the neutron-weighting formulation dudsnterfere with this ability. Test
6 replaces Test 5’s correct barrel with an over-enrichedvatte5.5 w/o U-235. This test was
discussed for a number of different parameters at the end apt€h4; recall that the obvious
correct answer is to use half of each barrel. Table 5.9 shioatghe formulation (witk,, = 0
ande,,, = 0.01m,.) does reasonably well on this problem, using roughly 2% nobtee under-
enriched barrel than it should. Unfortunately, this teshigoout one of the main drawbacks of
our formulation: the nature of the approximation inhererthie neutronic weight constraint is
that it often leads to approximations wismallerreproduction factors than the target recipe.
If anything, the opposite would be preferable, so that th@pmation has excess reactivity
with respect to the target and thus a better chance of bestlgais a real reactor. In the case
of Test 6, the error iy is only -0.07%; however, that error increases for Test 7himfinal test,
we remove the U-235 from the over-enriched barrel (makingqdesirable to use at all) and
add a third barrel containing plenty of pure Pu-239. An ideainulation in this case would
instruct us to use all of the barrel enriched to 3.5 w/o U-288 to add enough of the Pu-239
to recover the original neutron reproduction faétom truth, the answer approximates that
gualitative behavior but again “under-produces” from tleespective of neutron regeneration,
this time with an error of -1.8% (a fairly large number givédre tscale at which deviations
from criticality matter). However, unlike in Test 6, whergciuding the neutronic weighting
constraint erodes the quality of our approximation, Tesotl have been worse off without

it, since no plutonium at all would be used in its absence.

5This amount can be calculated analytically or numericallyjgomes to approximately 0.46 tons for this
problem.

104

Table 5.9 Problem definition and results for Tests 5-7: Recipe appratximavith fissionable

components.
Test Target recipe Candidate barrels Desired Result
[tons] [tons] solution
5 [U-235, U-238] 1:[3.5,96.5] x1 =0 x1 =10
=[4.5, 95.5] 2:[4.5,95.5] To =1 xe =1
(n = 1.23648) | (n = 1.23648)
6 [U-235, U-238] 1:[3.5,96.5] x1=0.5 x1 = 0.509957
=[4.5, 95.5] 2:[5.5, 94.5] x9 =0.5 xo = 0.500043
(n = 1.23648) | (n = 1.23561)
7 | [U-235, U-238, Pu-239] 1:[3.5,96.5,0.0] ry =1 x1 = 0.989637
=[4.5, 95.5, 0] 2:1[0.0,94.5,0.0] 29 =0 29 =0
3:]0.0, 0.0, 5.50] | x5 = 0.0836327 | x5 = 0.0615514
(n =1.23648) | (n=1.21332)

Finally, we mention briefly two “pathological” tests upon mh this method fails com-
pletely because of the intrinsic/extrinsic problem disadsin Section 4.4. Consider first what
would happen if we produced a test that had the same relatpis Test 5 as Test 2 did to
Test 1. If we double the target recipe and add a barrel id@nticTest 5’s correct answer,
the method will fail; while the correct answer is to use botlthe 100-ton barrels enriched to
the proper weight percentage of U-235, this choice leadsalation of the neutronic weight
constraint because the sum of the candidates’ neutroneegfen factors is twice the value of
that same factor for the target recipe. Thus, the solvert@llius that the problem is infeasible.
Conversely, we could provide several under-enriched (on gwst natural) uranium barrels.
In this case, even though each provides insufficient neugproduction, from the standpoint
of our current neutron weight constraint, the sum of theseslsawould have an (artificially)
adequate combineg value. We can choose to help the separations plants avasé Siria-
tions by ensuring that they combine or divide barrels as &g to maintain candidates that
are appropriately sized for the sizes of order the plantdilkety to receive. However, this
strategy could interfere with any modeling decisions alvchat the real-world size of a barrel
should be. In the absence of this technique, problems ohttisre currently require relaxing

or removing the neutronic weight constraint.

105

The above shortcomings emphasize the point that more workaded in identifying im-
proved formulations for solving the general recipe appr@tion problem. However, this
methodology still represents a substantial improvemeet oon-physical methods that al-
low extraction of arbitrary isotopes from a large soup ofycded material. This claim can be
strengthened when GENIUSV2 incorporates a simplified uemgine like that of Scopatz and
Schneider (2009), since such a tool would allow deviatiomfinput recipes without introduc-
ing such egregious errors in allowable burnup and dischaagepics when large deviations do
occur. In sum, the above method is flawed but neverthelegsrpbde to the currently available

alternatives, at least from a long-term modeling perspecti

5.2.2 A simple recycling scenario

Finally, we turn our attention to studying recipe approximain situ, via a scenario (Prob-
lem 9) that includes reprocessing. This activity is meati bodemonstrate GENIUSv2’s abil-
ity to simulate closed fuel cycles and as an opportunity tthier explore and refine the RAP-
formulations. Problem 9 models a high-demand and high-tiraegion served by enriched
uranium oxide PWR reactors and a lower-demand, lower-groggion served by mixed oxide
PWRs. For the latter, we choose a VISION MOX fuel recipe that&@ioruranium, neptunium,
and plutonium only and is suitable for thermal recycle sdesaThe facility deployment and
simulation parameters for this case are given in Tables &t05.11, respectively. The fuel
cycle facilities all have more than adequate monthly capdcimeet the needs of the reactor
fleets. To maximize the illustrative power of this example mn it without decay, without
any lag between spent-fuel ejection and reprocessing, athdwt allowing the separations
plant to discriminate between spent UOX fuel and spent MG When procuring material to
reprocess.

Since Institution 8’s fuel fabrication plant produces MQX¢f, it sends requests for a com-
modity enumerated internally aspMox (for separated mixed oxides). Separations plants cur-
rently estimate their availability of this commodity whermkmg offers for it by summing over

the material objects that were produced from appropria¢asts of separated material. Which

106

Table 5.10 Facility deployment simple thermal recycle scien
Region | Institution Facilities
1 1 12 UOX PWRs in Jan. 2010
Linear growth: 850 MWelyea
1 UOX Fuel Fab
1 Separations
1 Mine/Mill
1 Conversion
1 Enrichment
3 MOX PWRs in Jan. 2010
Linear growth: 142 MWelyea
8 1 MOX Fuel Fab

=

N OO B WN

=

Table 5.11 Parameters for simple thermal recycle scenario.

Value
Parameter UOX PWR \ MOX PWR
Start year 2010
End year 2109
Decay Turned off
Fuel cooling delay None
Separation plant requests All used fuel
Construction + license time 5 years
Operating timeQOT 50 years
Capacity factor(C'F’ 0.90
Power capacityP [MWe] 1050 1050
Thermal efficiencyy 0.34 0.34
Cycle time, T [months] 12 12
Fuel burnup Bu [GWd/tHM] 51 46
Fuel batches per coré] 5 5

of those streams is appropriate will depend on what kinds @XMuels it expects to be pro-
viding material for. Because for this scenario we know theasspons plant will be providing
the material for U-Np-Pu MOX fuels only, we manually set tienp to use an implementation
of the VISION 2.2 base case’s UREX3 metAo@his method separates the recycled fuel into
(among others) a uranium stream, a neptunium-plutoniusastr and a higher actinide stream,

the first two of which are the relevant ones for produciegMox suitable for U-Np-Pu fuels.

5Thanks to CNERG's Royal Elmore for his help implementinggbparations schemes in GENIUSv2.

107

Just as we manually set the separations plant to use a pithe¢'ssappropriate for even-
tually producing U-Np-Pu MOX, so too do we ensure that it omgludes suitable barrels
(from the uranium and neptunium-plutonium streams) whéimgeup a recipe approximation
problem to solve. These two choices are a subset of a largbigon that can be labelled
“separations tuning,” which is itself a subset of the oVéfakl-cycle tuning” issue introduced
in Chapter 3. Helping the separations plant figure out how &ratp in a sensible way given
the recycled material it will likely be called upon to pro@uis a particularly important area
of future GENIUS modeling work and stands to significantlynove the quality of the recipe
approximations without having to change the formulatiboandidate barrels have been sepa-
rated according to a scheme that is tailored to specific eaafijinterest, they will be identified
and used accordingly.

The scenario outlined above was repeated parametricallinémy different combinations
of the tolerances,, ande¢,, from the RAP formulation given in Equation 4.15. During the
simulation, the 27 MOX-fueled PWRs order a total of 929 batabfefiel. The quality of
each of these approximations is plotted (in simulation QrisheFigure 5.10 and summarized in
Table 5.12 for the subset of the,(¢,,) parameter space that best illustrates the trend toward
reasonably successful approximations. In this series,ate,sconstant at 10% of the total
recipe mass and let, vary from 10% to 50% of the recipe’s reproduction factor lbefielax-
ing it completely. This scenario comes the closest to piogidecipes with the appropriate
reproduction factor when the influence of tiidvased neutron weight constraint is completely
removed. Given the underestimates)oh Test 6 and 7 caused by the inexactness of Equation
4.19, this pattern is not especially surprising.

On the other hand, theariability in Figure 5.10 is at first a little surprising, since in the
absence of decay all fuel arriving at separations has onelptwo possible recipes. However,
if we think about the chief cause of this variability, we cardarstand both why it exists and

why it diminishes over time. The dominant causes here are

108

Recycled fuel reproduction factors
1.4 - . For various RAP neutronic weighting tolerances
| |
e IOt
L I ‘»‘1\»;,‘: LA il '|\|“ J’ B 1k, T VT LAV R My W 4 W
S R T [
& oo :
i i |
H i ! — —— - Target recipe
> | 10%
3 1 20%
'g T B 50%
5. i No constraint
t=300 | t=600 | t=900
. !
T I T I T T
200 400 600 800
Approximation number
Recycled fuel total masses
i For various RAP neutronic weighting tolerances
AT T | _ | S
22 AL AL LA At A 1 AL, AR LA IR S o
LU Y i
S 1 A O i
O 1 | [-——- Target recipe
woaid o I i 10%
£ I, i I 20%
- Wy : N 50%
i o l | No constraint
e [! !
20| | ! !
! ! !
| t=300 | t=600 | t=900
! ! !
19 ' : ' : L :
200 400 600 800
Approximation number

Figure 5.10 Quality of recipe approximations in simple recycling sagmaUnlike in Test 7,
which required a neutronics-weight constraint in order b dose to the correct
answer, here including this constraint degrades the guzlihe approximation.

¢ the high variability in the number of shipments both to armmhfrseparations when there
are few reactors in the system (which means the number amofilze candidate barrels

changes a lot from month to month at early times),

109

Table 5.12 Statistics on deviation from desiredand total mass for recipe approximations in
simple recycling scenario for various RAP neutron weigitiolerances.

Tlrec — napprox Myec — mapprox
Tolerance | Avg | Min | Max | Avg | Min | Max
[%] | [%] | [%] | [%] | [%] | [%]
10% 5.77|1 0.335| 26.1| 1.12 | -1.25| 10.0
20% 5.57|0.333| 24.7| 1.05 | -1.26| 9.67
50% 5.19| 0.334| 25.8 | 0.892| -1.26| 9.42
No constraint 4.89| 0.332| 7.56 | 0.707| -1.27| 1.44

e the “tuning” between the dominant discharge recipe and ¢lage for fresh recycled

fuel, and

¢ the polluting effects of the “twice-burned” spent MOX fueldithe increasing probability

that separations will receive some of it in a given month idioin to spent UOX fuel.

The latter two items in the above list are best understoodavide-by-side listing of the
composition of desired versus available material. Talll& Shows the mass fractions of each
isotope that we would like to have available from the barfetsned from the uranium and
neptunium-plutonium streams (Column 3) as well as the massidns we actually get from
(separately) reprocessing spent UOX fuel (Column 4) andt3g&X fuel (Column 5). Notice
that the relative proportions within the two streams ars@ido matching the desired values
for the spent UOX stream than for the spent MOX stream. Magedkie neptunium-plutonium
stream from the spent UOX is a better fit than the uranium froemsUOX. These observations
about the quality of the different recycled streams seene tiole from a neutronics perspective
as well. The most important isotopes with respect to reigtwe U-235, Pu-239, and Pu-241,
SO we expect that the approximations with the best neutrpraperties will be from when
barrels unpolluted by reprocessed MOX fuel are available.

Figure 5.11 helps us see the big picture with respect to the dforecycled material in
this final scenario. By the end of the simulation, almost 5 ktbiMpent fuel have arrived at
reprocessing. Less than half of this amount ends up beingosek to fuel fabrication to be

burned in MOX reactors. The time axis on the out-going plat haen reversed for ease of

110

Table 5.13 Composition of desired and available recycled materiatéorstructing MOX fuel.

Compositions [w/0]
Stream Isotope | Desired for | Available from | Available from
fresh MOX spent UOX spent MOX
U-232 0 4.27e-9 7.06e-8
U-233 0 2.14e-8 1.23e-6
Uranium U-234 2.00e-2 4.35e-4 3.16e-2
U-235 0.822 0.756 0.517
U-236 0.613 0.599 0.608
U-238 98.5 98.6 98.8
Np-237 5.03 5.25 4.17
Pu-238 2.50 2.45 5.79
Neptunium- | Pu-239 50.4 47.0 39.3
Plutonium | Pu-240 23.9 23.8 27.2
Pu-241 11.2 14.1 14.1
Pu-242 6.99 7.37 9.48
Pu-244 0 2.45e-4 2.10e-4

comparison of the relative proportions of selected isatoféne key observations here are as

follows: First, the relative proportionsithin each of the two streams remain fairly constant

and are the same entering the separations plant as leavifiig observation reiterates the

point that the separations plant does not allsetopicseparation, only elemental separation.

It also serves to remind us that, no matter how good the fatioul for recipe approximation

is, it can only be as successful as the quality of the canglidedterial it has to work with.

Second, the relative proportiohetweerthe two streams are not constant; cumulatively, the

approximation algorithm chooses to use proportionallg lesthe uranium stream than the

plutonium stream compared to what it has available. Thissstprising in light of Table 5.13,

and it's reassuring from a reactivity perspective becausexpect the plutonium stream to be

closer than the uranium stream to having the specified n@atpsoperties.

5.3 Summary

This chapter reported results from a number of testing antbdstration problems for both

once-through and closed fuel cycles. Problems 1-4 showadélactor fleets in GENIUSv2

111

Cumulative used fuel mass received by separations Cumulative recycled fuel mass sent by separations
59 r2.4

w
N
]

i
@

Recycled fuel mass [ktHM]

M
n

Used fuel mass [ktHM]
o
@

=
N
o

Year Year

Figure 5.11 Mass flows by selected isotope both into and out of the sepaggilant in Prob-
lem 9. Note the different y-axis scales between the left- dglat-hand images
and the reversing of the time axis for the material $eorh separations to facili-
tate comparisons of the two flows’ compositions. The withieath proportions
are roughly constant, but the between-stream proportioos she cumulative ef-
fect of the approximation scheme favoring the plutoniuraatn over the uranium
stream.

behave quite similarly to their VISION counterparts. Peybt 5 and 6 demonstrated the code’s
affinity-based customer and supplier matching capalslite fuel cycle services (fabrication),
and Problems 7 and 8 served an analogous role for matchingebttycle material supply
and demand (unenriched uranium). All of these matchinglprob demonstrate the somewhat
arbitrary and unpredictable routing effects caused by nexgey in the NFP formulations, a
behavior expected to matter less and less as more subtt®sticg schemes eliminate much
of the degeneracy.

Specific to closed fuel cycles, the recipe approximatiomidations were subjected to unit
tests (Tests 1-7) and a full scenario featuring a thermal Mé&ycle (Problem 9). Together
tests 6 and 7 showed that a recipe approximation constnaim¢otronics is necessary to obtain
the desired behavior in certain situations but can do morms lihan good in others. Such
was indeed the case in Problem 9, where the best approxmsatiere obtained by removing
the neutronics constraint altogether and allowing therd@lyo to match purely on isotopic
and total mass. Results from these early recipe approximatiadies show that much work
remains to be done, both in the formulation itself and infigreeparations plant operation to

ensure that formulation has suitable material to choosa.fro

112

Chapter 6
Summary and future work

6.1 Summary

This thesis has reported on the state of GENIUSv2 at the jpoité development when
it had reached an important milestone: the ability to rugdamulti-region scenarios that in-
clude all of the basic nuclear fuel cycle steps, includingoeessing. The work this document
has described has helped lay the foundation for the goalvektigating the advanced-fuel-
cycle-related research questions discussed in Chapter i$. wink includes the design and
implementation of the discrete-facilities/discrete-enetls fuel cycle model described in Sec-
tion 3.1, the simulation machinery and robust input-outpfrastructure described throughout
the rest of Chapter 3, and—most importantly—Chapter 4’s miakry methodology for using
optimization techniques to determine appropriate mdtesiging instructions and recipe ap-
proximation choices. The fuel cycle modeling problems regmbin Chapter 5 are intended to
demonstrate and characterize the current behavior of ithe @iod to point out areas for future
improvement.

To our knowledge, GENIUSV2 is the first code to adapt linear metwork flow program-
ming techniques for the purposes of global optimizationuwsdiear fuel cycles. The complexity
of the fuel cycle system—especially its many commaodities,ibfungibility of some of those
commodities, and the different purposes and modes of aperateach of the types of nuclear
fuel cycle facility—makes this a challenging task. At timéisese challenges have required
the adoption of an air of pragmatism—most notably throughititroduction of physical and

mathematical approximations—in order to arrive at a codechn produce meaningful results

113

and to which more complex and sophisticated techniqueseaddbed in the future. The naive
way GENIUS currently forms NFPs to solve the routing probl@ma month-by-month basis
and the poor quality of the neutronic weighting constramthe recipe approximation algo-
rithm are probably the two most notable examples, but ther@thers as well. Most of these
areas for future work were identified as they became relevanto close they are reviewed

briefly below.

6.2 Future work
6.2.1 Facility data and behavior

The task labelled fuel cycle “tuning” throughout this doamhis the most obvious and
probably straightforward opportunity for immediately iroping the quality of GENIUSv2
modeling. In essence, this task involves identifying—tlgio some combination of research
into industry practice and trial and error—appropriatedkirof facility behavior that benefit
the functioning of the fuel cycle as a whole (and parametetduantify this behavior). For
instance, it's clearly in no one’s best interest for fa@ktto order material only at the exact time
they “realize” they need it. But identifying appropriate rhanisms for forecasting supply and
demand and maintaining appropriately sized buffers of rmadteill require careful thought,
especially because such decisions represent local hiesitisat could interfere with the search
for globally optimal material routing strategies.

Another set of modeling difficulties related to facility @efor involves the issue of fuel
cycle commodities’ varying fungibility. Recall, for inste®, the way that the source and size
of the material objects processed and stored in the sepasgtiant determines both the size
of the LP GENIUS solves during recipe approximation and theety of the “wine cellar”
from which it chooses appropriate materials for constngctecycled fuel. In Problem 9, that
variety caused great variability in the quality of the recgpproximations, an effect that should
be eliminated in the future.

Finally, developers may wish to begin examining possiblého@s for including more

explicit and detailed economic modeling in GENIUS, eitheraapost-processing step or as

114

runtime functionality that can affect the flow of materiabahe status of facilities or their in-
stitutional owners. Past CNERG intern Arnaud Reveillere woide early implementations of
the post-processing-based approach, and Jain and Wilserphaposed paradigms for treating
facilities’ cash flows and financial outlooks explicitly 2&). Obviously, allowing economic
considerations to affect the flow of material may requirauatipg or replacing the network-

based MRP formulations currently in place.

6.2.2 Material routing problem

Most of the other future work called for by those formulasomas discussed in Sections
4.2 and 4.3 and relates to the following four issues: disétentinuous tension, degeneracy,
arc costing, and the time horizon. The first problem ariseshfose commodities where the
manager does not wish to “split” a customer’s request betvwee different suppliers as if
it were a continuous quantity. For instance, unlike in theecaf yellowcake or unenriched
uranium, it's hard to imagine a reactor ever wanting a batd¢hed it ordered to be provided by
two separate suppliers. Unfortunately, because fabrieatake their offers with respect to the
amount of mass they're able to process, requests for fuehbsatare converted to an equivalent
mass as well, and there’s nothing to guarantee that all ohtass selected to flow to the
sink representing that request will come from a single seaade (fabricator). One promising
approach that would not cause the class of optimizationlpnobo become significantly harder
would involve figuring out how to teach the fabricators to makliable offers based on a
number of batches instead of a mass. If both the supply andnigfor fabricated fuel batches
are expressed in terms imtegerdivergences and constraints (like a number of batches), the
the solution would be guaranteed to include only integerdles/well, provided the code used

a true network solvér

IThis is a surprising and convenient property of linear nekwitow programs with integer constraints. See
Bertsekas (1998)

115

The problems of degeneracy and arc costing are relatedydlageg the variation in the arc
costs of the network associated with a particular commothgy fewer the number of degen-
erate optimal solutions. So it seems that the most experdieanhs of eliminating problematic
degeneracies is to increase the level of detail in the psookassigning arc costs. As more
real-world data is incorporated into in the model, mechasi$or choosing arc costs that bet-
ter represent the true competition in the system will liketgsent themselves. Of course, the
goal of identifying a form whose objective function expligiminimizes the cost of producing
electricity (rather than simply the costs of matching as Imsapply to demand as possible)
may help determine whether exploring this arc-costingaesgequestion is worth the time and
effort.

Finally, it should be a high priority to identify a more appra@te (i.e., longer) time hori-
zon for solving the routing problem (in whatever form) andntodifying the other aspects
of the code to accommodate this change, as necessary. Trediope research and energy
economics literature will likely be of great help in doing, & might some of the underly-
ing methodologies implemented in the MARKAL code and otheren@orous platforms for

modeling energy economics.

6.2.3 Recipe approximation problem

The two biggest concerns with the current RAP formulatiors(&j the challenges posed
by expressing rigorous neutronics constraints in a formsist@nt with common linear pro-
gramming techniques and (2) operating the chemical sepasaschemes themselves in such
a way that the algorithm itself has appropriately composadliciate barrels to choose from.
Some of the pressure on both these tasks could be relievedheiincorporation of a simpli-
fied burnup engine such as the one developed by Scopatz andi&eh since its use would at
least allow the code to capture the consequences of fadipgavide a closely matched recipe.
In the case of the consistently under-reactive approxonatin Problem 9, it would allow us
to calculate a (consequently smaller) maximum burnup ferrdtycled fuel, in addition to

correcting the subsequent miscalculation of the recyaledls end-of-life isotopics (without

116

this capability, error in the input recipe isotopics becsraeen larger error in the output recipe

isotopics).

6.2.4 Fuel cycle design problem

Finally, we return (for completeness’ sake) to the questihe fuel cycle design problem
as a whole. The decision to require that the exact facilifgla@enent be specified as input
rather than being determined dynamically according toimmheuristics serves as an impor-
tant example of the techniques that will be necessary in ingrtoward the goal of making
GENIUS compatible with “wrapper-based” optimization teirfues like simulated annealing,
genetic algorithms, etc. Of course, in addition to this warkin the code, a very large area
of future GENIUS-related work will be to design the actuahtgy for linking the code to ap-
propriate optimization software. A useful first step migatabliterature review of the available
open-source choices; DAKOTA (Eldred et al., 2008), a robudkit maintained at Sandia Na-
tional Laboratories for use on design optimization prolddike this one, seems like a strong
contender. In any event, this work will be important to eeghiat GENIUSv2 continue toward
its fourth and most challenging design principle: to be aegative tool for fuel cycle analysis

anddesign.

117

Bibliography

Allali, A., Bojariu, R., Diaz, S., Elgizouli, ., Griggs, D., &wkins, D., Hohmeyer,
O., Jallow, B. P., Kajfez-Bogataj, L., Leary, N., Lee, H., and afr D.
(2007). Climate change 2007: Synthesis report. Technicalorte Inter-
governmental Panel on Climate Change. Accessed 5 January 208

http://www.ipcc.ch/pdf/assessment-report/ard/syr/ar4_syr.pdf.

Allison, G. (2005). Nuclear Terrorism: The Ultimate Preventable Catastroplcbapter
Through the Prism of 9/11, pages 123-139. Henry Hold and Coypbéew York.

Benedict, M. and Pigford, T. (1981)\uclear Chemical EngineeringicGraw-Hill Publishing

Co., Columbus, OH, second edition.

Bertsekas, D. P. (1998)Network Optimization: Continuous and Discrete Modethena

Scientific, Nashua, NH.

Board on Energy and Environmental Systems (2008). Review dE’®@uclear energy re-
search and development program. Technical report, Ndtresearch Council, Washington,

DC. Accessed 5 January 2009 frérmtp: //www.nap.edu/catalog/11998 . html.

Boscher, T., Romano, A., Hejzlar, P., Kazimi, M., and Todre4s(2004). The CAFCA
code for simulation of nuclear fuel cycles: Description aéthodology, assumptions, and
initial results. Technical Report Report No. MIT-NFC-TR-069as88achusetts Institute of
Technology, Cambridge, MA.

Chinneck, J. W. (2007 Practical Optimization: A Gentle Introductiohapter Network Flow
Programming, pages 1-12. [Self-published], Ottawa, ON.

http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
http://www.nap.edu/catalog/11998.html

118

Cochran, R. G. and Tsoulfanidis, N. (1990)he Nuclear Fuel Cycle: Analysis and Manage-

ment American Nuclear Society, La Grange Park, IL, second @liti
COIN-OR (2007). CLP 1.7 [softwarehttps://projects.coin-or.org/Clp.

Darst, R. G. and Dawson, J. I. (2008). Baptists and bootleggere removed: The politics
of radioactive waste internalization in the European UniGtobal Environmental Politics
8(2):17-38.

de la Garza, A. (1977). Uranium-236 in light water react@rgguel recycled to an enriching
plant. Nuclear Technology32:176—185.

Doman, L. E., Staub, J., Mayne, L., Barden, J., Martin, P. listelM., Kerney, D., Kette, S.,
Aniti, L., Murphy, B., Kapilow-Cohen, B., and Lindstrom, P. (). International energy
outlook. Technical report, Energy Information Adminisioa. Accessed 5 January 2009

fromhttp://www.eia.doe.gov/oiaf/ieo/pdf/0484(2008) . pdf.

Dunzik-Gougar, M. L., Juchau, C. A., Pasamehmetoglu, K.stvi| P. P. H., Oliver, K. M.,
Turinsky, P. J., Abdel-Khalik, H. S., Hays, R., and StoveET({2007). Global Evaluation of
Nuclear Infrastructure Utilization Scenarios (GENIUS)Global 2007: Advanced Nuclear

Fuel Cycles and Systenmsmerican Nuclear Society.

Eldred, M. S., Adams, B. M., Haskell, K., Bohnhoff, W. J., Eddy,P., Gay, D. M., Hart,
W. E., Hough, P. D., Kolda, T. G., Swiler, L. P., and WatsonP.J(2008). DAKOTA, A
Multilevel Parallel Object-Oriented Framework for Desigrptimization, Parameter Esti-
mation, Uncertainty Quantification, and Sensitivity Arsédy Sandia National Laboratories,

Albuquerque, NM, 4.2+ edition. Report No. SAND2006-6337.

Ferris, M. C., Mangasarian, O. L., and Wright, S. J. (2008phear Programming with Mat-
lab. MPS-SIAM Series on Optimization. Society for IndustrialdaApplied Mathematics,
Philadelphia, PA, first edition.

https://projects.coin-or.org/Clp
http://www.eia.doe.gov/oiaf/ieo/pdf/0484(2008).pdf

119

Fischer, P., Kaushik, D., Nowak, D., Siegel, A., Yang, W.&d Pieper, G. W. (2008). Ad-
vanced simulation for fast reactor analysis. Accessed 20 2@09 from U.S. Department of

Energy Office of Sciencéyttp://www.scidacreview.org/0803/html/nuclear.html.

Forrest, J., de la Nuez, D., and Lougee-Heimer, R. (20CG4P User Guide IBM. Accessed
10 May 2009 fromhttp://www.coin-or.org/Clp/userguide/clpuserguide.html.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (199d3ign Patterns: Elements of
Reusable Object-Oriented Softwasgddison-Wesley Professional, Upper Saddle River, NJ,

illustrated edition.

GEN IV International Forum (2009). Generations of nuclearn- e
ergy. Accessed 20 April 2009 from OECD Nuclear Energy Agency,

http://www.gen-4.org/Technology/evolution.htm.

Grady, R. M. (2008). Development of economic accounting facl@ar waste in fuel cycle

analysis. Master’s thesis, University of Wisconsin-Madis

Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M., aNdgner, J. (1997). A survey of
global optimization methods. Technical report, Sandiddvat Laboratories, Albuquerque,

NM. Accessed May 1 2009 frofttp: //www.cs.sandia.gov/opt/survey/main.html.

Hermann, O. W. and Westfall, R. M. (1998). ORIGEN-S: SCALE systeodule to calculate
fuel deplettion, actinide transmutation, fission produgildup and decay, and associated
radiation source terms. Technical report, Oak Ridge Nakibahoratory, Oak Ridge, TN.
Report No. NUREG/CR-0200.

ILOG (2008). CPLEX 11.0 [softwarehttp://www.ilog.com/products/cplex/.
isee systems (2008). STELLA 9 [softwar@ftp://www.iseesystems.com/.

Jacobi, W. M. (1989). Fast breeder reactors for energy ggcumuclear Technology
88(2):183-189.

http://www.scidacreview.org/0803/html/nuclear.html
http://www.coin-or.org/Clp/userguide/clpuserguide.html
http://www.gen-4.org/Technology/evolution.htm
http://www.cs.sandia.gov/opt/survey/main.html
http://www.ilog.com/products/cplex/
http://www.iseesystems.com/

120

Jacobson, J., Yacout, A., Matthern, G., Piet, S., Shropsbir, and Laws, C. (2007). VISION
2: Enhanced simulation model of the next generation nudledcycle. InTransactions of

the American Nuclear Societyolume 96, pages 199-200.

Jacobson, J., Yacout, A. M., Matthern, G., Piet, S., Shropsid., and Laws, C. (2006).
VISION: Verifiable fuel cycle simulation model. [fransactions of the American Nuclear

Society volume 95, pages 157-9.

Jain, R. and Wilson, P. P. H. (2006). Transitioning to glohalraization in fuel cycle system

study tools. InTransactions of the American Nuclear Socjetyiume 95, pages 162-3.

Juchau, C. (2008). Development of the global evaluation ofear infrastructure and utiliza-
tion scenarios (GENIUS) nuclear fuel cycle systems anslysde. Master’s thesis, Idaho

State University.

Juchau, C. A. and Dunzik-Gougar, M. L. (2006). A review of macl fuel cycle systems
codes. Technical report, SINEMA LDRD Project. Accessed 1Brir&y 2007 from

http://thesinema.org/.

Juchau, C. A., Dunzik-Gougar, M. L., and Pasamehmetoglu2606). Simulation Institute
for Nuclear Energy Modeling and Analyses (SINEMA): Devefagpa GENIUS. InTrans-

actions of the American Nuclear Sociggglume 94, pages 78-9.

Kelly, J. and Savage, C. (2005). Advanced Fuel Cycle Inigapvogram plan. Technical
report, Advanced Fuel Cycle Initiative, Washington, DC. Assed 5 January 2009 from
http://afci.sandia.gov/downloads/2005_AFCI_Program_Plan.pdf.

Lippman, S. B. (1991)C++ Primer. Addison-Wesley, Upper Saddle River, NJ, 2nd edition.

Lisowski, P. (2007). Global Nuclear Energy Partnershigslobal Nuclear Energy Partnership
Annual MeetingLitchfield Park, AZ. Global Nuclear Energy Partnership.

http://thesinema.org/
http://afci.sandia.gov/downloads/2005_AFCI_Program_Plan.pdf

121

Loulou, R., Goldstein, G., and Noble, K. (2008ocumentation for the MARKAL Family of
Models Energy Technology Systems Analysis Programme. Acces3&pal 2009 from
http://www.etsap.org/MrklDoc-I_StdMARKAL.pdf.

McCarthy, K. (2007). Systems analysis campaign.Global Nuclear Energy Partnership
Annual MeetingLitchfield Park, AZ. Global Nuclear Energy Partnership.

Miron, A. (2008). Identification and analysis of critical ggm in nuclear fuel cy-
cle codes required by the SINEMA program. Technical Repoxtjeet Number
07-071, University of Cincinnati, Cincinatti, OH. Accesse@ Zpril 2009 from
http://www.ne.doe.gov/neri/2007Awards/NERIO7-071Abstract. pdf.

Nuclear and Radiation Studies Board (2008). Internatioattin of the nuclear fuel cycle:
Goals, strategies, and challenges [prepublication camdhnical report, National Academy
of Sciences, National Research Council, and Russian Acadnmgiefi&s, Washington, DC.

Accessed 6 January 2009 framtp: //www.nap.edu/catalog/12477 .html.

Nuclear Regulatory Commission (2009). Expected new nucleawep plant ap-
plications. Accessed 20 April 2009 from Nuclear Regulatory m@uossion,

http://tinyurl.com/mo9tfh.

Nuttall, W. J. (2005).Nuclear Renaissance: Technologies and Policies for the rEustiNu-

clear Power CRC Press, Boca Raton.

Nystrom, I. and Wene, C.-O. (1999). Energy-economy linkm@/iIARKAL-MACRO: Inter-
play of nuclear, conservation and CO2 policies in Swedeaternational Journal of Envi-
ronment and Pollution12(2/3):323-342.

Oliver, K. M., ElImore, R., Haney, K., and Huff, K. (2008yenius-2.0 DocumentatiorJW-
Madison Computational Nuclear Engineering Research Growggiddn, WI, 2.0 edition.

Accessed April 30 2009 fromttp://cnerg.engr.wisc.edu/GENIUS2/docs/.

http://www.etsap.org/MrklDoc-I_StdMARKAL.pdf
http://www.ne.doe.gov/neri/2007Awards/NERI07-071Abstract.pdf
http://www.nap.edu/catalog/12477.html
http://tinyurl.com/mo9tfh
http://cnerg.engr.wisc.edu/GENIUS2/docs/

122

Oliver, K. M. and Fatenejad, M. (2009). Object-oriented gyeom-
ming [C++ boot camp course notes]. Technical report, The HEiack
Within, UW-Madison, Madison, WI. Accessed 29 April 2009 from

http://hackerwithin.org/cgi-bin/hackerwithin.fcgi/wiki/CppBootCampQOop.

Oliver, K. M., Wilson, P. P. H., Reveillere, A., Ahn, T. W., DopK., Huff, K., and Elmore,
R. (2009). Studying international fuel cycle robustneshiwhiie GENIUSv2 discrete facil-
ities/materials fuel cycle systems analysis tool [in presgper accepted]. IGlobal 2009:
The Nuclear Fuel Cycle: Sustainable Options & Industrial Pexsives French Nuclear

Energy Society.

Pasamehmetoglu, K. O. and Finck, P. (2006). SINEMA: Sinmalnstitute for Nuclear En-
ergy Modeling and Analyses. [fransactions of the American Nuclear Socjetylume 95,

pages 155-6.

Phillips, A., Jacobson, J., and Shropshire, D. (2007). @ISIEECON: A dynamic model for
estimating nuclear fuel cycle costs. Tmansactions of the American Nuclear Socjetyl-

ume 96, page 121.

Pidd, M. (2003).Tools for Thinking: Modelling in Management Sciendehn Wiley and Sons,
Hoboken, NJ.

Piet, S. (2007). Updated conceptualization of the “winesgue. Personal Communication.

Powersim Inc. (2006)Tutorial on How to Use the SimCoupler Modulkeccessed 9 June 2009

from www . psim-europe.com/openload2.php?doc=tutorialSimcoupler.pdf.
Powersim Software (2008). Studio 7 [softwaret.tp://www.powersim. com.
Python Software Foundation (2006). Python 2.5 [softwéate}p: //www.python.org/.

Radel, T. E. (2007). Repository modeling for fuel cycle scenanalysis. Master’s thesis,

University of Wisconsin-Madison.

http://hackerwithin.org/cgi-bin/hackerwithin.fcgi/wiki/CppBootCampOop
www.psim-europe.com/openload2.php?doc=tutorialSimcoupler.pdf
http://www.powersim.com
http://www.python.org/

123

Sauter, R. and Awerbuch, S. (2003). Oil price volatility acdmomic activity: A survey and
literature review. Technical report, International Enefgency, Paris. Accessed 5 January

2009 fromhttp://tinyurl.com/m8sqs4.

Scopatz, A. M. and Schneider, E. A. (2009). A new method fgridacomputation
of transient fuel cycle material balances [in presdluclear Engineering and Design
doi:10.1016/j.nucengdes.2009.02.022:1-16.

Shropshire, D. (2007). Advanced fuel cycle cost basis. feah Report DE-ACO7-
051D14517, Idaho National Laboratory.

Sims, R. E., Rogner, H.-H., and Gregory, K. (2003). Carbon earisand mitigation cost
comparisons between fossil fuel, nuclear and renewablggnesources for electricity gen-
eration.Energy Policy 31:1315-1326.

SQLite Consortium (2008). SQLite [software]. Availablehatp://www.sqlite.org/.

Van Den Durpel, L., Yacout, A., Wade, D., and Khalil, H. (200BANESS dynamic analysis
of nuclear system strategies. ®Global 2003: Atoms for Prosperity: Updating Eisenhower’s
Global Vision for Nuclear Energypages 1613-1620, New Orleans, LA. American Nuclear

Society.

Van Den Durpel, L., Yacout, A. M., and Wade, D. C. (2007). Stadn developments and
applications of the integrated nuclear energy system c@deHESS. InTransactions of the

American Nuclear Societyolume 96, pages 212-14.

Vidal, C. J. and Goetschalckx, M. (1997). Strategic produrctlistribution models: A critical
review with emphasis on global supply chain modeluropean Journal of Operational

Research98:1-18.

Voorspools, K. R., Brouwers, E. A., and D’haeseleer, W. D. 0Bnergy content and indirect
greenhouse gas emissions embedded in ‘emission-free’rquevats: Results for the Low
Countries.Applied Energy67:307-330.

http://tinyurl.com/m8sqs4
http://www.sqlite.org/

124

Wigeland, R. A., Bauer, T. H., Fanning, T. H., and Morris, E. B0{6). Separations and
transmutation criteria to improve utilization of a geologepository. Nuclear Technology
154(1):95-106.

Wilson, P. P. H. and Oliver, K. M. (2007). Designing GENIUSrsien 2 to model inter-facility
relationships [poster]. lh&lobal Nuclear Energy Partnership Annual Meetjrigtchfield
Park, AZ. Global Nuclear Energy Partnership.

Yacout, A. M., Jacobson, J. J., Matthern, G., Piet, S. J.,Maiseytsev, A. (2006a). VI-
SION — A dynamic model of the nuclear fuel cycle [preprintjco®ssed 1 May 2008 from

http://www.inl.gov/technicalpublications/Documents/3479816.pdf.

Yacout, A. M., Jacobson, J. J., Matthern, G., Piet, S. J.,o@hire, D. E,
and Laws, C. (2006b). VISION - \erifiable fuel cycle simulatioof
nuclear fuel cycle dynamics [preprint]. Accessed 26 May 206rom

http://www.inl.gov/technicalpublications/Documents/3394908. pdf.

Yi, S. K. (2008). Nuclear fuel cycle modeling approachesrémycling and transmutation of

spent nuclear fuel. Master’s thesis, The Ohio State Uniyers

http://www.inl.gov/technicalpublications/Documents/3479816.pdf
http://www.inl.gov/technicalpublications/Documents/3394908.pdf

DISCARD THIS PAGE

125

Appendix A: Useful terms from object-oriented programming

A.1 Classes, objects, and inheritance

Inheritanceis a feature of object-oriented programming that allowstifigr creation of in-
creasingly specializedbjects A common illustration of inheritance is via the creation of
a taxonomy of classes representing living things (see Lgpm991; Oliver and Fatenejad,
2009). In object-oriented programmingglassis the blueprint for creating individual objects
or instances so a programmer who wants to model animals will first writeaarmal class.
This class will define the state and behavior possible fomats in general. Next, he or she
can write specializedubclassethatderiveor inherit fromthe animal class. Instances of these
subclasses (say, an object representing a bear or a rdidgit)rtherit the data and abilities of
the superclasdrom which they are derived—in addition to whatever bearraibit-specific

data and abilities are defined in their respective classes.

A.2 Member data and methods

Member dataare declared in a class and store the state of its objectsnstance, the data
member representing the age of an animal will obviously [iferéint for different instances
that are different ages. Similarly, timethodsor member functionsf a class determine each
object’s behavior. These functions are invoked on pasiciristances, likely changing their
state in some way. Member functions of a superclass can lver étherited ooverriddenby

its subclasses.

A.3 Static data and methods

Staticdata and methods are not associated with particular instiems of a class but with
the class as a whole. For instance, if there were a limit opdipailation of a particular animal

species, it might be enforced via static data that trackechtimber of instantiations of that

126

particular animal subclass and a static function that nelyi checked that number and could

take appropriate action when it got too high.

A.4 Singletons

Described by Gamma et al. (1994)siagletonclass object is specifically designed to be
universally accessible to any object that knows about &,avstatic function of the singleton
class. For this behavior to work, we must require that onky imstance of the singleton class

is ever created.

Appendix B: Input and output file tables

B.1 Input

127

Five tables are currently needed to form a valid GENIUSv2iirfpe: Regions, Insts,

Facs, FacParams, andRules. These tables, included in an SQLite database that getegass

in to the code as a command-line argument, are described.belo

Table B.1 Description okegions table input.
Column | Data type Description
regID INTEGER A unique identifier for this region.
PRIMARY KEY
name TEXT A name for this region.
type TEXT An enumeration specifying whether this region operates
fuel cycle facilities other than reactors.
demand | BLOB A specially formatted block of memory that
encodes the monthly electricity demand for this region.
Table B.2 Description ofnsts table input.
Column | Data type Description
instID | INTEGER A unique identifier for this institution.
PRIMARY KEY
regID INTEGER The identifier for the region where this institution|is
located.
name TEXT A name for this institution.
build BLOB A specially formatted block of memory that
encodes this institution’s plan for building future
facilities.

128

Table B.3 Description afacs table input.

Column Data type | Description
facID INTEGER | A unique identifier for this facility.
PRIMARY
KEY

instID INTEGER | The identifier for the institution that owns this facility.

name TEXT A name for this facility.

yearStartOp | INTEGER | The year this facility started (or will start) operating.

monthStartOp | INTEGER | The month this facility started (or will start) operating.

constrTime INTEGER | The number of months it takes (or took) to construct
this facility.

lifeTime INTEGER | The number of months this facility will operate.

cycleTime INTEGER | The number of months it takes to perform a cycle of
this facility’s characteristic operation.

status TEXT An enumeration specifying the operational status of
this facility at the beginning of the simulation (operatir
under construction, etc.).

capFactor FLOAT A typical capacity factor for this facility.

capacity FLOAT An appropriate measure of this facility’s capacity (unit
vary).

type TEXT An enumeration specifying what kind of facility this is.

batchesPer- | INTEGER | The number of fuel batches this facility uses in its cort

Core if it is a reactor.

feed TEXT The commodity or commaodities this facility uses as
feedstock(s).

prod TEXT The commodity or commodities this facility produces.

tailsFrac FLOAT The default tails fraction used by this facility, if it
performs enrichment.

oreWF FLOAT The weight fraction of uranium present in the yellow-
cake produced by this facility, if it is a mine.

freshRec INTEGER | The recipe this facility uses for fresh fuel, if it is a
reactor.

spentRec INTEGER | The recipe this facility produces as spent fuel, ifitis a

reactor.

g

)

(

129

Table B.4 Description ofacParams table input.

Column Data type | Description
1D INTEGER | A unique identifier for this class of generic future
PRIMARY | facilities.
KEY

type TEXT An enumeration specifying what kind of facility the
members of this generic future type are.

name TEXT A name for this generic facility type.

lifeTime INTEGER | The number of months facilities of this type will operate.

constrTime | INTEGER | The number of months it takes to construct a facility of
this type.

cycleTime INTEGER | The number of months it takes to perform a cycle of
this facility type’s characteristic operation.

charCF FLOAT A characteristic capacity factor for this generic facility
type.

capacity FLOAT An appropriate measure of this facility type’s capacity
(units vary).

batchesPer- | INTEGER | The number of fuel batches members of this facility use

Core in their cores, if they are reactors.

feed TEXT The commodity or commodities this facility type uses as
feedstock(s).

prod TEXT The commodity or commodities this facility type
produces.

tailsFrac FLOAT The default tails fraction used by this facility type, if it
performs enrichment.

oreWF FLOAT The weight fraction of uranium present in the yellow-
cake produced by this facility type, if it is a mine type.

freshRec INTEGER | The recipe this facility type uses for fresh fuel, if it is a
reactor type.

spentRec INTEGER | The recipe this facility type produces as spent fuel, if it is

areactor type.

Table B.5 Description oftules table input.

Column Data type | Description

fromType | TEXT The actor type of the suppliek€gion, Inst, Or Fac)
involved in this rule.

fromID INTEGER | The identifier of the supplier involved in this rule.

toType TEXT The actor type of the customé¥egion, Inst, or Fac)
involved in this rule.

toID INTEGER | The identifier of the customer involved in this rule.

commodity | TEXT The commaodity type this rule applies to.

affinity | FLOAT The affinity for trade this rule describes.

timeStart | INTEGER | The time at which this rule begins to apply.

timeEnd INTEGER | The time at which this rule ceases to apply.

130

131

B.2 Output

Three tables currently have GENIUSv2 output written to trdemring or at the end of the
simulation:Facs, MatFacHist, andMatIsoHist. Facs data is written as additional columns
in the table that already exist¥atFacHist and MatIsoHist are entirely new tables not

present in the original input file. This output is describetbly.

Table B.6 Description ofacs table output.

Column | Data type | Description

startOp | INTEGER | The GENIUS time at which this facility began operating.

capLog | BLOB A specially formatted block of memory that encodes the

monthly capacity factors this facility actually operated
with during the simulation.
Table B.7 Description oflatFacHist table output.
Column | Data type | Description
matID INTEGER | The unique identifier of the material object whose
transfer is stored in this record.
time INTEGER | The time at which this material transfer occurred.
fromFac | INTEGER | The identifier of the facility that sent the material.
toFac INTEGER | The identifier of the facility that received the material.
compID | INTEGER | The identifier of the composition of the material at the
time of the transfer.
Table B.8 Description oflatIsoHist table output.
Column | Data type Description
compID | INTEGER The identifier of the material composition stored
PRIMARY KEY | in this record.
time INTEGER The time at which this composition applied to some
material.
comp BLOB A specially formatted block of memory that encodes
the isotopic composition stored in this record.

